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ABSTRACT 

Uncertainty is inherent to real-world engineering systems, and reliability analysis aims 

at quantitatively measuring the probability that engineering systems successfully perform 

the intended functionalities under various sources of uncertainties. In this dissertation, 

heterogeneous uncertainties including input variation, data uncertainty, simulation model 

uncertainty, and time-dependent uncertainty have been taken into account in reliability 

analysis and reliability-based design optimization (RBDO).  The input variation inherently 

exists in practical engineering system and can be characterized by statistical modeling 

methods. Data uncertainty occurs when surrogate models are constructed to replace the 

simulations or experiments based on a set of training data, while simulation model 

uncertainty is introduced when high-fidelity simulation models are built through 

idealizations and simplifications of real physical processes or systems.  Time-dependent 

uncertainty is involved when considering system or component aging and deterioration. 

Ensuring a high level of system reliability is one of the critical targets for engineering 

design, and this dissertation studies effective reliability analysis and reliability-based 

design optimization (RBDO) techniques to address the challenges of heterogeneous 

uncertainties.  

First of all, a novel reliability analysis method is proposed to deal with input 

randomness and time-dependent uncertainty. An ensemble learning framework is designed 

by integrating the Long short-term memory (LSTM) and feedforward neural network. 

Time-series data is utilized to construct a surrogate model for capturing the time-dependent 

responses with respect to input variables and stochastic processes. Moreover, a RBDO 
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framework with Kriging technique is presented to address the time-dependent uncertainty 

in design optimization. Limit state functions are transformed into time-independent domain 

by converting the stochastic processes and time parameter to random variables, and Kriging 

surrogate models are then built and enhanced by a design-driven adaptive sampling scheme 

to accurately identify potential instantaneous failure events.  

Secondly, an equivalent reliability index (ERI) method is proposed for handling both 

input variations and surrogate model uncertainty in RBDO. To account for the surrogate 

model uncertainty, a Gaussian mixture model is constructed based on Gaussian process 

model predictions. To propagate both input variations and surrogate model uncertainty into 

reliability analysis, the statistical moments of the GMM is utilized for calculating an 

equivalent reliability index. The sensitivity of ERI with respect to design variables is 

analytically derived to facilitate the surrogate model-based product design process, lead to 

reliable optimum solutions.  

Thirdly, different effective methods are developed to handle the simulation model 

uncertainty as well as the surrogate model uncertainty. An active resource allocation 

framework is proposed for accurate reliability analysis using both simulation and 

experimental data, where a two-phase updating strategy is developed for reducing the 

computational costs. The framework is further extended for RBDO problems, where multi-

fidelity design algorithm is presented to ensure accurate optimum designs while 

minimizing the computational costs. To account for both the bias terms and unknown 

parameters in the simulation model, Bayesian inference method is adopted for building a 

validated surrogate model, and a Bayesian-based mixture modeling method is developed 

to ensure reliable system designs with the consideration of heterogeneous uncertainties. 
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1 INTRODUCTION 

1.1 Research Backgrounds 

In the past decades, reliability analysis and reliability-based design optimization 

(RBDO) techniques have gained increasing attention in practical engineering applications. 

Reliability analysis aims at quantitatively measuring the probability that engineering 

systems successfully perform the intended functionalities under various sources of 

uncertainties. Uncertainty is inherent to real-world engineering systems, and reliability-

based design optimization is utilized to provide optimum system designs that have the best 

compromise between cost and system reliability.  

With the rapid development of computational power, computer simulations become 

more popular for representing physical processes. However, the computational costs limit 

the application of such simulation models in reliability analysis and RBDO. Surrogate 

modeling is a popular method to reduce the computational burden, which consists of 

replacing the expensive model by an easy-to-evaluate model fitted to a few data points 

called design of experiments (DoE). As a result, the accuracy of the surrogate model 

strongly affects the performance of reliability analysis and RBDO.  

Performing an accurate yet efficient reliability analysis is of critical importance in 

RBDO as it involves repeatedly running expensive simulations. However, most of the 

existing reliability analysis and RBDO approached only accounts for the system input 

variations, which is also known as the aleatory uncertainty that inherently exists in practical 

engineering system such as material properties and manufacturing batch to batch 
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variations. Different types of heterogeneous uncertainties are summarized in Table 1.1. 

Given different combinations of these heterogeneous uncertainties, effective methods 

should be utilized for ensuring accurate reliability analysis or reliable optimum designs.  

Table 1.1: Types of heterogeneous uncertainties 
Type Uncertainty Description 

A Input uncertainty Inherently exists in practical engineering 
system due to natural randomness 

B Surrogate model uncertainty The prediction errors due to the lack of 
training data 

C Simulation model uncertainty 
(bias & parameter) 

The response differences between real 
experiments and simulations, due to 
simplification and unknown parameters 

D Time-dependent uncertainty 
Exist widely in the time-dependent 
performance degeneration processes of 
engineering systems 

 

Model form uncertainty is also known as the simulation model uncertainty, which is 

introduced when high-fidelity simulation models are built through idealizations and 

simplifications of real physical processes or systems. Similarly, data uncertainty (or 

surrogate model uncertainty) occurs if low-fidelity surrogate models is constructed to 

replace the high-fidelity simulation models based on a set of simulations runs. The input 

variation, also known as aleatory uncertainty, inherently exists in practical engineering 

system such as material properties, and manufacturing batch to batch variations, which can 

be characterized by statistical modeling methods. A general formulation for quantifying 

the model form uncertainty is expressed as [1] 

 ( ) ( , ) ( )e my y δ ε= + +x x θ x  (1.1) 

where ye(x) denotes the actual observations of a physical process, ym(x, θ) represents 

the simulation model response as a function of inputs x and unknown parameters θ, which 
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is also referred to as calibration parameter, θture is the vector of true values for the unknown 

parameters, δ(x) represents the bias or discrepancy function that characterize the 

differences between simulation and experiment output. In this work, the experimental error 

is assumed to be neglectable as the model bias and unknown parameters are more dominant 

than experimental error in reality. As shown in Eq. (1.1), two main sources of model form 

uncertainties can be identified as: 1) the model parameters that fixed in real physics but is 

unknown in simulation model and 2) model discrepancy due to flawed understanding of 

the system. Inappropriate managing model form uncertainty may introduce significant 

errors in predicting system responses, resulting in inaccurate reliability assessment and 

untrustworthy optimal designs. Surrogate models can be constructed based on simulations 

and experimental data to further reduce the computational costs. However, the data 

uncertainty is introduced due to the limited number of training. As a result, errors are 

inevitable when using surrogates to predict the actual performance of the physical system. 

1.2 Research Objectives 

1.2.1 Efficient time-dependent reliability analysis and RBDO 

Time-variant RBDO, referred to as “tRBDO”, seeks optimum system designs with a 

high reliability level over time under time-variant uncertainties such as stochastic operation 

condition and system aging. Thus, the time-variant reliability analysis in tRBDO often 

involves stochastic processes and time parameters and thus is technically difficult and 

computationally expensive. Though vast efforts have been investigated for time-variant 

reliability assessment, a rigorous formulation is still lacking for generic time-variant 

reliability-based design optimization (tRBDO) and it remains a grand challenge to handle 
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such complexity associated with both stationary and non-stationary stochastic processes in 

tRBDO. Moreover, how to efficiently conduct the time-dependent reliability analysis for 

problems involving stochastic processes still remains a challenge. 

Research solution 1: A LSTM-based Ensemble Learning Framework for Time-

Dependent Reliability Analysis.  To be specific, multiple long short-term memory networks 

are employed to learn the random behavior of the system response with respect to the 

stochastic process while fixing the random variables. The benefit of constructing the LSTM 

models lies in that they can accurately predict system responses given any new random 

realizations of the stochastic process. With the LSTM models, a set of artificial data is 

collected according to different random realizations of the stochastic process. To quantify 

the uncertainty due to the random variables as well as the stochastic process, a deep 

feedforward neural network (DFN) is employed. The artificial data set is utilized to train 

the DFN, which is served as a surrogate model of the time-dependent limit state function. 

By employing the Gaussian process (GP) regression, the number of neurons of the DFN is 

determined through an approximated response surface. As a result, the well trained DFN 

can be utilized to make predictions of the minimum value of time-dependent response 

given any random realizations of variable and stochastic process. By employing the Monte 

Carlo simulation, the proposed approach can be directly utilized for estimating the time-

dependent reliability without incurring extra computational costs. 

Research solution 2: Time-variant reliability-based design optimization using 

sequential kriging modeling. This approach employs a transformation scheme for 

dimension reduction of performance functions with stochastic process. A Kriging surrogate 

model is developed based on the transformed random variables and a sequential sampling 
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update method is adopted for increasing the fidelity of the surrogate model. Time-variant 

probability of failure is accurately estimated by applying the MCS method based on the 

updated Kriging model. For the design process, stochastic sensitivity is approximated by 

the first-order score function without incurring any extra computational cost. 

 
1.2.2 Surrogate model uncertainty quantification in RBDO 

Surrogate modeling methods have been widely used to replace the computationally 

expensive simulations using a set of training data, and thus alleviate the computational 

burden of simulation-based reliability assessment. The accuracy of response predictions 

using surrogates varies over the input domain, and highly depends on the amount and 

locations of training data points. The major issue of surrogate modeling lies in that there is 

no rigorous means of quantifying and propagating the surrogate model uncertainty due to 

the lack of training data, which may result in less confidence in predicting the probability 

of failure. Ignoring surrogate model uncertainty in simulation-based design optimization 

with insufficient training data may lead to inaccurate predictions and unreliable system 

design. 

Research solution 3: Surrogate model uncertainty quantification for reliability-based 

design optimization. An equivalent reliability index (ERI) method is presented for handling 

both input variation and surrogate model uncertainty in RBDO. The ERI first employs 

Gaussian process (GP) regression to build surrogates of expensive simulations for 

predicting the performances of system at unobserved points within input domain as normal 

distributed random variables. Then a Gaussian mixture model (GMM) will be formed to 

propagate both the input variations and surrogate model uncertainty simultaneously in 
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characterizing the stochastic behavior of system performance. With the development of 

GMM, an equivalent reliability index is derived based on the statistical moments of the 

GMM to approximate the probability of failure. To facilitate the ERI-based RBDO, we 

also derive the sensitivity of ERI with respect to design variables analytically without 

requiring extra training data. 

1.2.3 Simulation model uncertainty quantification in reliability analysis and RBDO 

Most reliability analysis methods are performed purely based on simulation models, 

which are assumed to be able to accurately represent the real physics. However, simulation 

models are often established based on idealization and simplification of the physical 

process. Therefore, conventional reliability analysis methods may be unreliable as they 

lack the capability to account for the model bias, which is referred to as the differences in 

simulation results and actual physical observations. To validate the simulation model, data 

are needed from both the simulations and experimental observations, and surrogate models 

can be constructed for predicting experiment responses. Therefore, the simulation and 

experimental data used for simulation model validation highly affects the accuracy of the 

response predictions from the surrogate model. In most existing model bias correction 

methods, design of experiments using random sampling approach is employed for 

obtaining simulation results and experimental observations. As a result, resources 

including both simulations and experiments are not well allocated, resulting in inaccurate 

reliability approximations and unfordable costs. In reality, the experimental data is often 

limited as the cost dramatically increases with the number of experiments, and the cost of 

running high-fidelity simulations cannot be ignored. Therefore, an efficient resource 

allocation approach needs to be developed for smartly choosing the best input sites for both 
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simulations and experiments, and hence balance the tradeoff between costs and accuracy 

of reliability assessment. 

With the rapid development of computational power, computer simulations become 

more popular for representing physical processes and RBDO is often conducted based on 

predictive simulation models. However, a simulation model is often established based on 

approximations and simplifications of a physical process, and most of existing RBDO 

methods assume that simulation models are accurate, resulting in risky designs due to the 

ignorance of model form uncertainty (aka simulation model uncertainty). Therefore, 

simulation models have to be validated using experimental observations before it is utilized 

for engineering design under uncertainty. Mixture uncertainties due to model imperfection, 

lack of training data, and input variations coexist in practical simulation-based design 

applications. Despite the development of advanced approaches in managing different types 

of uncertainties individually, it remains challenging to handle the heterogeneity of different 

sources of uncertainties in uncertainty propagation and system design process. 

Research solution 4: Active resource allocation for reliability analysis with model bias 

correction.  Instead of randomly allocating resources, the proposed ARA approach 

introduces a two-phase strategy for sequentially identifying the important samples for 

running simulations and conducting experiments. In ARA, Gaussian process modeling 

technique is employed for correcting the model bias and quantifying the sufficiency of data. 

Based on a set of initial simulation data, GP model is first built for replacing the simulation 

model, then an adaptive sampling method is employed for updating the simulation data in 

phase I of ARA. To determine the experimental data that can effectively correct the 

simulation model, a new sample insertion criterion is proposed in phase II for iteratively 
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identifying the best input site for experiment. At each iteration, the available experimental 

data and simulation data are combined for model bias correction, and a hybrid GP model 

for the actual experimental response can be constructed accordingly. Then the Monte Carlo 

simulation method is employed for reliability analysis while the response is predicted by 

the GP model. The updating process in phase II is iteratively performed to enhance the 

fidelity of the hybrid GP model until the reliability approximations converge. 

Research solution 5: Reliability-based multi-fidelity optimization using adaptive hybrid 

learning.  In this work, we propose a reliability-based multi-fidelity design optimization 

(RBMO) framework to deal with design problems involving low- and high-fidelity data. 

In RBMO, the costs of running low- and high-fidelity models are reduced by introducing 

an adaptive hybrid learning (AHL) algorithm, which identifies new training samples for 

low- and high-fidelity model in a sequential manner. With available low- and high-fidelity 

data, a hybrid GP model can be constructed using GP-based multi-fidelity data fusion 

technique. Then the updated hybrid GP model is utilized for reliability and sensitivity 

analysis in solving an RBDO problem, leading to a pseudo optimal solution. At each 

iteration of RBMO, the adaptive hybrid learning and RBDO processes are sequentially 

performed until the pseudo optimal design is validated as a reliable optimal design. 

Therefore, the RBMO framework provides an efficient way to achieve accurate optimal 

solutions. 

Research solution 6: Bayesian mixture modeling for reliability-based design 

optimization under heterogeneous uncertainties. To aggregate the mixture uncertainties in 

reliability analysis, a Bayesian model inference approach is first employed to calibrate 

unknown parameters and capture the bias of the high-fidelity simulation model. By fusing 
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the simulation results and experimental observations, a validated Bayesian model is 

constructed for predicting the responses of the actual physical system. Monte Carlo 

simulation method is employed for propagating the input variations while the response at 

each MCS sample is predicted by the Bayesian model as a random variable that follows a 

normal distribution. With the resultant Gaussian mixtures, mixture uncertainties can be 

properly aggregated concurrently to obtain the distributions of stochastic system responses. 

A new concept, referred to as “aggregative reliability index”, is then defined based on the 

Gaussian mixtures to approximate the probability of failure under mixture uncertainties. 

The proposed Bayesian mixture modeling (BMM) approach is further integrated into the 

RBDO framework to search for the optimal solutions that can provide the best compromise 

balance the design coat and risks due to mixture uncertainties. 
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2 LITERATURE REVIEW 

2.1 Reliability analysis approaches 

In practical engineering applications, reliability analysis aims at quantitatively 

measuring the probability that engineering systems successfully perform the intended 

functionalities under various sources of uncertainties. In past decades, vast research efforts 

[2-4] have been devoted to developing advanced approaches for systemically treating 

uncertainties in reliability analysis. For example, the Bayesian inference method [5, 6] has 

been integrated into reliability analysis for handling the epistemic uncertainty due to the 

insufficient statistical information of the input variables. In order to consider system 

degradation and stochastic operation condition, time-dependent reliability analysis 

approaches [3, 7, 8] have been developed to calculate the reliability level of an engineering 

system during a specific time period. In addition, attention has been focused on rare event 

probability estimation [9-11] to improve the capability of estimating extremely small 

probability of failure.  

In the literature, both analytical- and simulation-based methods have been proposed for 

reliability assessment. As representatives of most probable point (MPP) based method, the 

first-order reliability method (FORM) [12, 13] and second-order reliability method (SORM) 

[14, 15] estimate the reliability by using the Taylor expansion to approximate the limit state 

function at the MPP. These approaches rely on iterative MPP searching process and require 

accurate sensitivity information of limit state function with respect to random variables. 

However, it is technically difficult to obtain the sensitivity information in practice. 

Moreover, significant errors may be introduced when dealing with highly nonlinear 
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problems. In reliability analysis, the ultimate purpose is to compute a multi-dimensional 

integral over a failure region, and univariate dimension reduction methods [16, 17] focus 

on decomposing the multi-dimensional integration into multiple one-dimensional 

integrations. To estimate the reliability, the moment-based integration rule is utilized for 

approximating the statistical moments of the limit state function based on the moments of 

each random variable. However, errors may be introduced due to the numerical integration 

using the Gaussian quadrature method. Simulation-based methods [18-20] such as direct 

Monte Carlo simulation is capable of providing more accurate reliability estimations than 

using analytical-based methods. Nevertheless, the extensive evaluations of the limit state 

function are computationally prohibitive in practical engineering applications. 

2.2 Reliability-based design optimization  

For decades, reliability-based design optimization (RBDO) [21-25] has been 

extensively studied to obtain a reliable solution under input variations in the early stage of 

product development. The goal of RBDO is to minimize the objective function while 

meeting predefined probabilistic constraints, and different RBDO methods have been 

investigated for specific concerns. To handle the epistemic uncertainty due to the unknown 

statistical information of the input variable, Bayesian inference is integrated with reliability 

analysis in Bayesian reliability-based design optimization (BRBDO) [26-28]. Reliability 

and robustness-based design optimization (RRBDO) [29-31] has gained more attention for 

seeking optimal designs, where the variability in the system performance due to the input 

variation is minimized. Dynamic reliability analysis approaches have been developed in 

time-dependent RBDO methods [32, 33] for ensuring high system reliability level 
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throughout a specific time period, leading to optimal solutions considering time-dependent 

uncertainties such as system deterioration and stochastic loading. 

In the literature, sophisticated optimization strategies such as double-loop [34], 

decoupled-loop [35, 36], and single-loop approaches [37, 38] have been developed to 

improve the computational efficiency of RBDO. In the double-loop approaches, reliability 

analysis is performed for every design iterations, resulting a nesting of two distinct levels 

of optimization. In contrast, single-loop approaches replace the probabilistic constraint 

with optimality conditions and solve the RBDO in a single loop procedure, while 

decoupled-loop methods transform the RBDO problem into a sequence of deterministic 

optimization problems. Despite the development of optimization strategies, implementing 

RBDO for large-scale industry applications remains challenging, as it requires a significant 

number of computationally intensive simulations in reliability analysis. 

2.3 Time-dependent reliability analysis and RBDO 

Recently, time-variant RBDO [39, 40] has gain an increasing attention for engineering 

system design. Time-variant RBDO, referred to as “tRBDO”, seeks optimum system 

designs with a high reliability level over time under time-variant uncertainties such as 

stochastic operation condition and system aging. Thus, the time-variant reliability analysis 

in tRBDO often involves stochastic processes and time parameters and thus is technically 

difficult and computationally expensive. In the literature, many methods have been 

developed for the time-variant reliability analysis. In the extreme value based approaches 

[41, 42], the worst scenario of system performance over a time interval is extracted to 

identify system failures. A time-variant reliability model can be transformed to a time-
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independent counterpart by only focusing on extreme system performances, and static 

reliability analysis tools are employed to estimate the time-variant probability of failure. 

Chen and Li [43] proposed an approach to evaluate the structural reliability based on the 

distribution of extreme value, where the virtual stochastic process is created to capture the 

probability density function of the extreme value. Hu and Du [44] proposed a sampling 

method to evaluate the extreme values of stochastic processes, and approximate the time-

variant reliability using the first-order reliability method. As analytical-based approaches, 

the out-crossing rate-based approaches [45, 46] evaluate the time-variant probability of 

failure by the integration of an out-crossing rate. Kuschel and Rackwitz [47] approximated 

the out-crossing rate by asymptotic second-order reliability methods while Andrieu-

Renaud et al. [48] proposed a PHI2 approach to obtain time-invariant reliability indices 

using FORM and compute the outcrossing rate based on the correlation of reliability 

indices at two successive time instants. To solve the first passage problem in time-variant 

reliability analysis involving stationary random processes, Singh et al. [49] developed an 

importance sampling approach to calculate the cumulative probability of failure. Recently, 

some researchers have utilized metamodeling techniques [50-52] to alleviate the 

computational burden of time-variant reliability analysis. With the consideration of 

parametric uncertainty, Hu et al. [53] construct surrogate models for evaluating the time-

instantaneous reliability index, and then identify the time-instantaneous most probable 

points using the fast integration method. Wang and Wang [54] proposed a double-loop 

adaptive sampling approach for efficient time-variant reliability analysis. In detail, 

Gaussian process regression is adopted to build surrogate models for predicting extreme 

system responses over time while the double loop sampling scheme searches for input 
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variables and time concurrently for updating the surrogate model until a pre-defined 

confidence target is satisfied. Hu and Du [55] developed a simulation method to evaluate 

the time-variant reliability based on the first order approximation and series expansions, 

where the stochastic process of the system performance is mapped into a Gaussian process 

for efficiently approximating time-variant reliability. 

In general, the performance of an engineering system is modeled by a limit state 

function G(x, z(t), t), where x ∈ Rnr denotes the time-independent random variables, z(t) 

represents the stochastic processes, and t is the time parameter. For time-dependent 

reliability analysis, failure event occurs if system performance at any time instant falls 

below a threshold, written as  

 ( , ( ), ) 0, [0, ]Lg t t t T< ∃ ∈x z             (2.1) 

where [0, TL] represents the system life cycle. Therefore, the probability of failure over a 

given time period [0, T] is defined as  

 (0, ) ( ( , ( ), ) 0, t [0, ]),0f LP T P g t t T T T= < ∃ ∈ ≤ ≤x z           (2.2) 

 As shown in Eqs. (2.1) and (2.2), stochastic processes are involved in the limit state 

function, thus, random realizations for the stochastic processes are required for computing 

the time-dependent system performances and reliability. For a Gaussian process zG(t), it 

can be fully characterized by three time-dependent functions, including the mean function 

μY(t), standard deviation function σY(t), and auto correlation function ρY(t). By discretizing 

the overall time interval into s time nodes, the covariance between two time nodes is 

defined as   

 ( , ) ( ) ( ) ( , )i j Y i Y j Y i jCov t t t t t tσ σ ρ=                 (2.3) 
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Therefore, a covariance matrix with respective to each two time nodes can be obtained as  
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          (2.4) 

By employing Eigen decomposition, the covariance matrix can be decomposed as Σ = 

QIQT, where Q = [Q1, Q2, …, Qs] represents the matrix of eigenvectors and I is a diagonal 

matrix with eigenvalues. Given a specified criterion, the number of dominated 

eigenfunctions m can be determined, then the original Gaussian process zG(t) can be 

simulated as 

 
1

( ) ( ) ( )
m

G y i i i
i

z t t I Q t pµ
=

≈ +∑                 (2.5) 

where p is the number of dominated eigenfunctions and p = [p1, p2, …, pm] are a set of 

uncorrelated standard normal random variables.  

• Out-crossing rated based approach 

A crossing event is defined as the phenomenon when time-variant system performance 

exceeds the safety zone. Therefore, time-variant reliability is approximated by the 

integration of the rate of reliability change with respect to time, referred to as out-crossing 

rate. Assuming all crossing events are independent, the crossing rate at time instant t is 

derived by 

 
0

Pr{ ( , ( ), ) 0 ( , ( ), ) 0}( ) lim
t

g X Y t t g X Y t t t tt
t

λ
∆ →

< ∩ + ∆ + ∆ >
≈

∆
 (2.6) 

and the probability of failure within a time interval [0, T] is defined as 
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 { }0 0
(0, ) 1 (1 )exp ( )

T

f fP T P t dtλ= − − −∫  (2.7) 

where Pf0 is the probability of failure at the initial state with t = 0. As shown in Eq. (2.7), 

the time-variant reliability can be directly estimated once the crossing rate λ(t) is obtained. 

To approximate the crossing rate with consideration of stochastic processes, Stephen O. 

Rice published a formula in 1944 [56] that is widely used with the first-order reliability 

method (FORM). The specified time interval is discretized into many time instants, and 

stochastic processes Y(t) are translated to random variables at each time node. The 

corresponding discretized limit state functions are transformed into a standard normal 

space and FORM is employed for searching the most probable point (MPP). Reliability 

index of each time node are evaluated by FORM, and the crossing rate can be approximated 

by the reliability indices of two successive time node and the correlation of stochastic 

process Y(t).  

• Extreme values based approach 

Another category of time-variant reliability analysis is the extreme value-based 

approach, which focuses on the worst performance of an engineered system over a time 

period. Assuming failure is defined as g(X,Y(t),t) < 0, the worst system performance 

ge(X,TL) over a period is the minimum of time-variant limit state functions, 

 g ( , ) min  ( , ( ), ), [0,T ]e L LT g Y t t t= ∈X X  (2.8) 

Thus the probability of failure within a time interval is described as the probability that 

extreme value falls below the threshold (ge < 0). In practice, it is intractable to analytically 

obtain the probabilistic characterization of the extreme value, and simulation-based 

methods are often used to obtain the extreme value distribution and then approximate the 
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time-variant probability of failure. However, the computational cost is extremely high due 

to the inevitable large number of evaluations. To alleviate the computational burden of 

simulation-based methods, Wang et al. [57] developed a nested extreme response surface 

(NERS) method to efficiently extract the worst performance within a time interval. In 

NERS framework, a response surface is constructed for predicting the time instant 

corresponding to the extreme response within a specified time interval [0, T], which is 

described by, 

 { }( ) min  ( , ), [0,T]eT X t g X t t= ∈  (2.9) 

 ( , ( ))e eg g X T X=  (2.10) 

An efficient global optimization (EGO) approach [58] is utilized to efficiently extract 

extreme events for constructing a time response surface. Furthermore, an adaptive response 

prediction and model maturation mechanism (ARPMM) is employed to update the time 

response surface iteratively. After the updating process, the original time-variant reliability 

analysis can be converted to the time-independent one and the probability of failure within 

[0, TL] is derived as 

 
(0, ) ( ( , ( )) 0)f L r eP T P g X T X= <

 
(2.11) 

Consequently, time-independent reliability analysis tools such as FORM can be used 

for reliability-based design optimization.  

2.4 Surrogate model-based approaches 

Surrogate modeling methods [59-61] such as artificial neural networks (ANN) [62-64], 

radial basis functions (RBF) [65-67], and Kriging [68-70] have been developed to replace 
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the computationally expensive simulations using a set of training data, and thus alleviate 

the computational burden of simulation-based reliability assessment and RBDO. The 

accuracy of response predictions using surrogates varies over the input domain, and highly 

depends on the amount and locations of training data points. The major issue of surrogate 

modeling lies in that there is no rigorous means of quantifying and propagating the 

surrogate model uncertainty due to the lack of training data, which may result in less 

confidence in predicting the probability of failure. To improve the fidelity of surrogate 

models, adaptive updating schemes [71-74] have been integrated with reliability analysis 

to identify important points sequentially in the local critical regions for updating the 

surrogates. For instance, Deng, J. [75] adopted the radial basis function network to build 

surrogates for reliability analysis and adaptively update the parameters of the RBF to 

minimize the sum squared error. Wang and Wang proposed a cumulative confidence level 

(CCL) concept to quantify the fidelity of surrogates for reliability analysis, and then 

developed a sequential sampling scheme to improve the CCL in RBDO. Dubourg et al. 

[76] developed a population-based adaptive refinement technique to sequentially reduce 

the error, where the Kriging model can be updated by adding multiple training samples 

simultaneously. Even though the accuracy of surrogate models can be significantly 

improved with these adaptive sampling schemes, the remaining surrogate model 

uncertainty can still be significant, especially for cases when the computational resource is 

limited. Ignoring surrogate model uncertainty in simulation-based design optimization with 

insufficient training data may lead to inaccurate predictions and unreliable system design. 

To compensate the surrogate model uncertainty without adding new training data, 

conservative surrogate modeling methods [77-79] utilized safety margin concepts in 
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predicting system performance. Luna and Young [80] used the bootstrapping method to 

construct the conservative surrogate model, where the prediction interval is estimated by 

considering the uncertainty from the correlation parameter used in Kriging covariance 

function. Zhao et al. [81] employed the corrected Akaike information criterion (AICc) to 

assess the accuracy of the Kriging surrogate model and calculate the weighted prediction 

variance, and a conservative surrogate model is developed by using the percentile value of 

the prediction interval. 

• Conservative surrogate modeling 

Given a set of training points, a surrogate model ĝ(x) can be constructed after 

evaluating the responses of all the training points. By adding a safety margin to the 

surrogate model, a conservative surrogate model ĝc(x) can be obtained as  

 ˆ ˆ( ) ( )cg g s= −x x  (2.12) 

where x is a vector of system input parameters and s is the safety margin used to bias the 

predicted response from the original surrogate model ĝ(x). The safety margin s is always a 

constant and its sign depends on the definition of failure event. Assuming a failure event 

occurs if the system performance is less than zero, the safety margin will always be positive. 

As shown in Eq. (2.12), determining a suitable safety margin is of critical importance in 

compensating the surrogate model uncertainty due to the lack of data in reliability analysis.  

In the literature, the prediction errors between the surrogate model and the origin 

performance function are calculated for computing the safety margin, given as  

 ˆ( ) ( ) ( )t t te g g= −x x x  (2.13) 
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where xt is the vector of a large number of test samples within the design space. 

Accordingly, the cumulative distribution function of the prediction errors Fe can be 

calculated and the fraction of the errors can be obtained by  

 1 (0)ec F= −  (2.14) 

where c is referred to as the conservativeness level of the surrogate model. For a given 

conservativeness level, the safety margin can be estimated in terms of the cumulative 

distribution function Fe as  

 1(1 )es F c−= − −  (2.15) 

where Fe
-1 is the inverse cumulative distribution function of the prediction errors. 

Obviously, the number of test samples determines the accuracy of the inverse CDF in Eq. 

(2.15) and affects the obtained safety margin. Therefore, obtaining an accurate estimation 

of the inverse CDF is extremely important in ensuring the performance of conservative 

estimations. By using a large number of test samples, an accurate safety margin for 

achieving a given conservativeness level can be obtained by Eq. (2.15). However, it is not 

applicable in practice due to the lack of training data. To alleviate the computational burden, 

Vianna et al. [82] employed the cross validation method to approximate the prediction 

errors. For a surrogate model constructed with p training samples, cross validation is a 

process of constructing new surrogate model without one of the p points and calculating 

the error respectively. After repeating the leave-one-out strategy for all the p samples, the 

corresponding cross validation errors can be obtained and used as the prediction errors of 

the origin surrogate model.  

3 AN LSTM-BASED ENSEMBLE LEARNING FRAMEWORK 
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FOR TIME-DEPENDENT RELIABILITY ANALYSIS  
3.1 Introduction 

This section presents a Long short-term memory (LSTM)-based ensemble learning 

framework for time-dependent reliability analysis. To deal with the time-dependent 

uncertainties, an LSTM network is first adopted to capture the relationship between the 

stochastic processes and the time-dependent system behavior. As a result, time-dependent 

system responses given any new random realizations of the stochastic process can be 

accurately predicted by the LSTM. By using different realizations of the time-independent 

random variables and stochastic process, multiple LSTMs are trained to model conditional 

limit state functions with fixed random variables, where a set of artificial data is collected 

according to random realizations of the stochastic processes. To quantify the uncertainty 

due to the random variables, Gaussian process modeling (GP) technique is employed for 

building surrogate models for the specified stochastic processes and time instant. With the 

GP models, the time-dependent system reliability can be directly approximated by using 

the Monte Carlo simulation. Two case studies are introduced to demonstrate the efficiency 

and accuracy of the proposed approach. 

3.2 LSTM-Based Ensemble Learning Framework 

The proposed framework aims at dealing with time-dependent reliability analysis 

problems involving stochastic processes and time parameter. To address the uncertainty 

due to the stochastic processes and time parameter, multiple LSTM models are first 

constructed by using sets of random realizations of the input variables and the stochastic 

process, where the inputs variables are used to introduce conditional limit state functions. 
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For each LSTM model, random realizations of the stochastic processes are provided for 

predicting the time-dependent system responses for the conditional limit state functions. 

Though these estimated system responses are not obtained by directly evaluating the actual 

time-dependent limit state function, the accuracy is ensured due to the benefits of LSTM. 

To specifically quantify the uncertainty due to the time-independent random variables, the 

Gaussian process modeling technique is adopted in the proposed ensemble learning 

framework. Based on the response predictions collected from multiple LSTM models, a 

set of Gaussian process models are constructed at the specified random realization of 

stochastic processes and time instant. With the GP models, the time-dependent reliability 

can be approximated by employing the Monte Carlo simulation (MCS) method.  

3.2.1 Long Short-Term Memory (LSTM) Neural Network   

In past decades, neural networks have seen great development in solving machine 

learning problems such as classification and regression. For problems with time series data, 

recurrent neural network (RNN) has been utilized, which has a feed-back loop to store past 

input information. A major challenge remains that it cannot provide accurate predictions 

when the data has long-term dependencies. To tackle the problem of long-term 

dependencies, LSTM was designed for processing and predicting on the basis of time series 

data.  
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Figure 3.1: Repeating modules of LSTM 

All recurrent neural networks have the form of a chain of repeating modules. To ensure 

LSTM is able to remember information for long periods of time, three gated unites are used 

in the repeating modules, including an input gate, output gate, and forget gate. The core 

idea of LSTM lies in that the information flow is represented by the cell state, which is 

shown as the top horizontal line in Fig. 3.1. LSTM has the capability of removing or adding 

information to the cell state by using the gated units. The information that no longer useful 

is removed with the forget gate. The inputs at the particular time instant xt and the previous 

cell output yt-1 are provided to the forget gate, which are multiplied with weight matrices 

and followed by bias, expressed as  

 ( )1t f t f t ff z y bσ −= + +W R   (3.1) 

where ft represents the forget gate output, Wf, Rf, and bf represents the input weights, 

recurrent weights, and bias, respectively, and σ(.) stands for the activation function. Usually 
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the sigmoid function is adopted as the activation function of the forget gate. Next, we need 

to decide what new information should be stored in the cell state based on two parts. First, 

the input gate determines which state will be updated, meanwhile a hyperbolic tangent 

layer creates a vector candidate values that should be added to the state. The computation 

process can be summarized as  

 
( )

( )
1

1tanh
t i t i t i

t C t C t C

i z y b

C z y b

σ −

−

= + +

= + +

W R

W R
 (3.2) 

where (Wi, Ri, and bi) and (WC, RC, and bC) are the input weights, recurrent weights, and 

bias of the input gate and the cell state, respectively. Then all the outputs from Eqs. (1) and 

(2) are utilized to update the old cell state, written as  

  1t t t t tC f C i C−= +   (3.3) 

As shown in Eq. (3.3), useless information is removed by multiplying the old state 

with the forget gate output, and the second term represents the new candidate values that 

scaled by how much we would like to update. At the end, the output gate is used to decide 

which part of the cell state should be utilized as the output yt. By applying the hyperbolic 

tangent function to the cell state, the output yt of LSTM at time instant t can be achieved as  

 
( )1

tanh( )
t o t o t o

t t t

o z y b
h o C

σ −= + +

= ⋅

W R
 (3.4) 

where ot represents the results of output gate, and Wo, Ro, and bo represents the input 

weights, recurrent weights, and bias, respectively. Based on the LSTM structure that 

introduced above, the gradients of weights and biases term can be computed accordingly. 

Therefore, optimization algorithms such as stochastic gradient descent, Root Mean Square 
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Propagation (RMS prop), and Adam can be utilized for determining the weight matrices 

and biases of the LSTM, where the mean square error (MSE) between the training labels 

and the LSTM outputs is minimized by employing the back-propagation through time 

(BPTT) algorithm. 

Tremendous research works have illustrated the effectiveness of LSTM network when 

handling time-dependent problems, however, LSTM lacks the capability of directly dealing 

with the time-independent random variables as it requires time-series training data. 

Therefore, instead of modeling the limit state function G(x, z(t), t), the concept of 

conditional limit state functions are introduced for LSTM modeling. In the proposed 

approach, n random realizations of the input variables and the stochastic process are 

generated for multiple LSTM training data preparation, denoted as X =[x1, x2, …, xn] and 

Z = [z1(t), z2(t), …, zn(t)], respectively. Given the random samples X, n conditional limit 

state functions gi(z(t), t) are used for building multiple LSTM models, which is expressed 

as   

   ( ( ), ) ( , ( ), ),      1, 2,...,i ig z t t G z t t i n= =x  (3.5) 

where xi represents the ith realizations of the random variables x. As shown in Eq. (3.5), 

each conditional limit state function is a simplified version of the original limit state 

function with fixed random variables. For the ith conditional limit state function, the time-

dependent system responses yi are evaluated by giving the inputs [xi, zi(t), t]. To train an 

LSTM model for this conditional limit state function, the training input is expressed as a 

matrix  
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where zi(tj) represents the stochastic processes value at the jth time instant. Accordingly, 

the training labels for the LSTM is a vector with s elements, expressed as yi = [yi(t1), 

yi(t2), …, yi(ts)]. Given the training data set, the LSTM can be trained by minimizing the 

MSE loss function. Following the same procedure, n LSTM models can be constructed, 

which respectively capture the relationship between the stochastic processes and time-

dependent system behaviors of the conditional limit state functions. For each LSTM model, 

time-dependent response predictions can be achieved given any realizations of the 

stochastic processes. Indeed, results are very accurate since the LSTM is capable of 

capturing the relationship between the stochastic processes and the system responses. 

However, how to quantify the uncertainty due to the random variables still remains a 

challenge. 

3.2.2 Instantaneous Response Modeling Using Gaussian Process  

As aforementioned, LSTM lacks the capability of dealing with the time-independent 

random variables. Therefore, Gaussian process modeling technique is employed for 

modeling the random system responses at each time instant. Gaussian process modeling 

technique is known as a nonparametric, Bayesian approach for tasks of both supervised 

and unsupervised learning. By using the GP model, a function with input parameters η can 

be modeled as  

 ( )2ˆ ( ) ~ ( ) , ( , )i jg GP Rση h η β η η  (3.7) 
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where the response is assumed to be a stationary Gaussian process with mean function 

h(η)β and covariance function V(η, η’) = σ2R(η, η’). The term h(η) is the vector of 

predefined polynomial functions and β is the vector of corresponding coefficients. In this 

work, a constant mean function is adopted, which is sufficient for engineering applications. 

In the GP model, the covariance function V(η, η’) is expressed as 

 
22 2 '

1
( , ') ( , ') exp

d

p p p
p

V Rσ σ ω
=

 
= = − − 

 
∑η η η η η η  (3.8) 

where ω = [ω1, ω2, …, ωk] is the vector of roughness parameters that capture the 

nonlinearity of the process, d is the dimension of the input η, and σ2 is an unknown variance. 

Therefore, the unknown hyperparameters β, σ2
, and ω a fully characterize a GP model, 

which can be approximated by maximum likelihood estimation (MLEs) method based on 

a training data set. Once the hyperparameters are achieved, the GP model is capable of 

predicting the response at any point η’ as a normal distribution with mean 

 1( ') ( ) ( )T
gp tµ −= + −η h η β r R Y Hβ  (3.9) 

and variance, 

 ( ){ }12 1 1 1 1( ') 1 ( ) ( )
TT T T T T T

gpv σ
−− − − −   = − + − −   η r R r h η H R r H R H h η H R r

 (3.10) 

where Yt denotes output training data, r is the correlation vector between η’ and the existing 

training points, H is an unit vector if the prior mean function is a constant. In this work, the 

GP model is adopted to construct the surrogate models based on the artificial data.   

As aforementioned, the constructed LSTMs can be used to make time-dependent 

response predictions of the conditional limit state functions. For data preparation, N 
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random realizations of the stochastic process Zmcs(t) = [z1
m(t), z2

m(t), …, zN
m(t)] are 

generated according to the stochastic properties, which are provided to each LSTM model 

for predicting the overall time-dependent responses. As a result, the collected responses 

data from the ith LSTM model are expressed as  

   
1 1 1
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where the time-dependent responses ŷj
i are the predictions of the conditional limit state 

function gi as   

    1ˆ ( ( ), ), ,...,i m
j i j sg t t t t t≈ =y z  (3.12) 

Though the responses predictions Ŷ = {Ŷi, i=1, 2, …, n} are very accurate due to the 

benefits of LSTM, they are not directly obtained based on the actual limit state functions. 

To distinguish the difference, they are denoted as artificial data in this work. With all the 

constructed n LSTM models, the responses of each conditional limit state function given 

the random realizations Zmcs(t) can be achieved. Therefore, given a specified time instant 

tk and a random realization of stochastic processes zj
m(tk), the collected response predictions 

ŷj(tk) = {ŷj
i(tk), i=1, 2, …, n} can be treated as instantaneous responses for limit state 

function with fixed stochastic processes and time instant, expressed as   

    ˆ ( ) ( ) ( ) ,i m
j k i j k ky t G t t≈ x z  (3.13) 

Given the n training inputs X =[x1, x2, …, xn] and set the corresponding response 

predictions ŷj(tk) as the training outputs, a GP model can be constructed for predicting the 

responses with different input x. In other words, the constructed GP model is utilized to 
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specifically quantify the random variables x. With the identical training inputs X, a GP 

model Mj
k can be constructed with the training outputs ŷj(tk) determined by specified j = 

1, …, N and k =1, …, s.  

3.2.3 Time-Dependent Reliability Analysis 

In this work, the Monte Carlo simulation (MCS) method is employed to calculate the 

time-dependent probability of failure based on the GP models. According to the statistical 

information of the input variables and the stochastic process, N random realizations are 

generated as the MCS samples, denoted as Umcs = [Xmcs, Zmcs(t)], where Xmcs = [x1
m, x2

m , …, 

xN
m] and Zmcs(t) = [z1

m(t), z2
m(t), …, zN

m(t)]. Based on the constructed GP models, the 

response for the jth MCS sample at time instant tk can be predicted as  

     ( ) ( , ( ), ) ( )mcs mcs mc
k k k

s k mcs
j j j j jy t Mt tG= ≈x z x  (3.14) 

Once all the time-dependent response predictions have been obtained, the minimum 

response corresponding to each MCS sample is extracted for reliability analysis. The MCS 

sample will be classified as failure or safe by an indicator function, given as  

 1
1,min ( ) 0

( )
0,            
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t
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U  (3.15) 

In Eq. (3.15), it shows that a failure event occurs when the worst performance over the 

given time period is less than zero. After evaluating all the MCS samples, the time-

dependent reliability can be approximated by  

 (0, ) f
f

N
P T

N
≈  (3.16) 

where Nf represents the number of failure samples classified by the indicator function.  
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3.3.4 Numerical Procedure 

The procedure of employing the proposed ensemble learning framework is summarized 

in a flowchart as shown in Fig. 3.2. Firstly, N MCS samples Umcs = [Xmcs, Zmcs(t)] are 

generated according to the statistic properties of the time-independent random variables 

and stochastic processes. To prepare the data for training multiple LSTM models, Latin 

hypercube sampling (LHS) is employed to generate n random samples of the time-

independent variables as X =[x1, x2, …, xn], lead to n conditional limit state functions. With 

n random realizations of the stochastic processes Z = [z1(t), z2(t), …, zn(t)], the 

corresponding time-dependent responses are directly evaluated based on the actual limit 

state functions. For modeling the conditional limit state functions, the ith LSTM model can 

be constructed based on the input [zi(t), t] and output yi. In the proposed approach, the 

LSTM models are constructed based on the “Keras” library in Python 3.6. The mean square 

error is used as the loss function, where the “Adam” optimizer with default learning rate 

0.001 is adopted for training process of all LSTM models.   

 For each LSTM model, random realizations of stochastic processes Zmcs are provided 

to achieve the time-dependent response predictions. Once all the artificial data is collected, 

GP models are constructed to model the instantaneous response with respect to the random 

variable x. For jth random realization and time instant tk, the obtained response data ŷj(tk) is 

utilized as the training outputs of GP model Mj
k, where the training inputs are the LHS 

samples X. The same procedure is repeated with different training outputs specified by j 

and k. By providing the MCS samples Xmcs
 to each GP model, the time-dependent response 

prediction corresponding to Umcs can be calculated. With an indicator function shown in 

Eq. (3.15), the minimum responses are utilized to determine if a MCS sample is classified 
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as failure or safe. Eventually, the time-dependent system reliability can be approximated 

according to Eq. (3.16).  

 

 

Figure 3.2: Flowchart of the proposed ensemble learning framework  

3.3 Case Studies 

In this section, two examples are used to demonstrate the effectiveness of the proposed 

approach for solving the time-dependent reliability analysis problems.  

3.3.1 Case Study I: A Mathematical Problem 

In the first case study, a limit state function with two random variables and three 

stochastic processes is utilized, which can be formulated as  

 2 2
1 2 3 1 2 2( , ( )) 0.5 ( ) ( ) 8 ( ) ( ) ( 1) 20G t x z t z t z t z t x= − + + −x z  (3.17) 

where each time-independent random variable in x = [x1, x2] follows a normal distribution, 



www.manaraa.com

32 

and the each stochastic process z(t) is assumed to follow a stationary Gaussian process. The 

autoeocrrelation for the ith stochastic process can be expressed as  

 ( ) ( )2
2 1

1 2

-
, expi

i

t t
t tρ

λ

 
= − 

 
 

 (3.18) 

where the coefficients λ are assigned to be 0.01, 0.005, 0.005, respectively. The statistical 

information of the random variables and the stochastic process are summarized in Table 

3.1. The time interval [0, 1] for this example is discretized into 60 nodes evenly, and 105 

random realizations of the stochastic process are generated for time-dependent reliability 

analysis.  

Table 3.1: Stochastic properties of the random variables 

Random variable Distribution Mean Standard deviation  

x1 Normal 5 0.5 

x2 Normal 6 0.5 

z1(t) Stationary Gaussian 5 0.3 

z2(t) Stationary Gaussian 2 0.1 

z3(t) Stationary Gaussian 4 0.2 

 

 The first step of employing the proposed approach is to prepare the training data 

for the LSTM models. As introduced in subsection 3.3.4, the Latin hypercube sampling is 

employed to generated 10 samples of random variables x. Each LHS sample is combined 

with a random realization of the stochastic processes z(t), and then evaluate the 

corresponding time-dependent responses based on Eq. (3.17). Given the training data sets, 

10 LSTM models can be constructed respectively. For each LSTM model, 105 MCS 
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samples of stochastic processes are provided for predicting the time-dependent system 

responses of the conditional limit state functions. Based on the achieved time-dependent 

response predictions, GP models can be constructed to estimate the instantaneous response 

at each time instant for a specified realization of the stochastic processes. Eventually, the 

time-dependent responses corresponding to the 105 MCS samples can be obtained based 

on the GP models, which are further utilized for estimating the time-dependent reliability. 

 

Figure 3.3: 10 random realizations of the stochastic processes and the resultant time-

dependent responses  

 The 10 random realizations of stochastic processes that are used to multiple LSTMs 

are shown in Fig. 3.3, where a), b), and c) respectively plots the random realizations for 

each stochastic process, and the resultant time-dependent responses are depicted in Fig. 
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3.3d). Ten LSTM models are trained based on these training data, where the number of 

neurons for each LSTM model is set to 40. All the LSTM models are well trained by using 

the Adam optimizer to minimize the MSE with 3000 maximum epochs, and the 

convergence curve for the 1st LSTM is shown in Fig. 3.4. To demonstrate that the LSTM 

is capable of accurately capturing the relationship between the stochastic processes and the 

time-dependent response. The comparison of the actual and predicted time-dependent 

responses is depicted in Fig. 3.5, where a) shows the response comparison of the 1st test 

sample using the 1st LSTM, and b) shows the response comparison of the 10th test sample 

using the 10th LSTM. The results demonstrated that the LSTM models have been well 

trained, which are capable of accurately predicting the time-dependent responses given any 

realizations of the stochastic processes.  

 

 

Figure 3.4: Convergence of the loss function for the 1st LSTM model 
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Figure 3.5: Comparisons between actual responses and estimations from LSTMs 

To demonstrate the accuracy of time-dependent response predictions using GP models, 

Figure 3.6 shows the comparison of the accurate and predicted time-dependent responses 

for the 25th and 75th MCS sample, respectively. The results demonstrate that the constructed 

GP models can effectively handle the randomness of the time-independent variables, and 

they can provide accurate response predictions for the whole time-series data.  

 

Figure 3.6: Comparisons between the actual and estimated time-dependent responses  

For comparison purpose, the “equivalent stochastic process transformation (eSPT)” 

method [8] is adopted for approximating the time-dependent reliability of the mathematical 

example. To validate the accuracy of reliability estimation, the actual time-dependent 
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system responses for the 105 MCS samples are calculated, and the resultant accurate 

reliability 0.9754 is treated as a reference. The reliability approximations achieved by the 

proposed approach and eSPT are given as 0.9732 and 0.9726 respectively. By converting 

the stochastic processes into time-independent variables, the eSPT method requires 88 

function evaluations to obtain the reliability estimation, which assumes the time-dependent 

response can be directly evaluated given stochastic processes values at any time instant. 

For practical time-dependent problems, it is intractable to directly achieve the response at 

a specified time instant. Thus, the required number of function evaluations for eSPT 

considering all the necessary evaluations is recalculated as 2512. In the proposed approach, 

we constructed multiple LSTM models by using 10 time series data, where the time interval 

consist of 60 time instant. Therefore, the number of function evaluations for the proposed 

approach is given as 600. By specifying different time intervals within [0, 1], time-

dependent reliability at different time period can be approximated based on the predicted 

responses. The comparison between the reliability approximations and accurate results 

computed by direct MCS is summarized in Table 3.2, which indicates that the proposed 

approach is capable of accurately capturing the variation of time-dependent reliability with 

respect to time. 

Table 3.2: Time-dependent reliability within different time intervals 

Time Interval Time nodes Estimated R Accurate R 

[0, 0.2] t1 ~ t12 0.9856 0.9858 

[0, 0.4] t12~ t24 0.9826 0.9820 

[0, 0.6] t25 ~ t36 0.9800 0.9784 

[0, 0.8] t36 ~ t48 0.9780 0.9760 
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[0, 1] t48 ~ t60 0.9758 0.9736 

    

3.3.2 Case Study II: A Corroded Beam Problem 

 A beam corrosion problem is considered as the second case study, where the 

geometry of the beam is shown in Fig. 3.7. The cross section is rectangular with an initial 

width b0 and height h0. Due to the corrosion, the size the of cross section decrease with 

time, where the time-dependent behavior can be modeled as  

 0

0

( ) 2
( ) 2

b t b kt
h t h kt

= −
 = −

 (3.19) 

According to Eq. (3.19), b(t) and h(t) are two time-dependent random variables at any time. 

A stochastic load F(t) is applied at the middle span, which follows a stationary Gaussian 

process. The yield strength of the material is denoted by σy, and the failure event occurs 

when the maximum stress exceeds the yielding limit of the beam. Therefore, the limit state 

function of the corroded beam problem is expressed as  

 
2 2( ) ( ) ( ) ( ) ( )( , ( ), )

4 4 8y
b t h t F t L b t h t LG F t t ρσ

 
= − + 

 
X  (3.20) 

In this case, three random variables, one stochastic process, and time parameter is 

involved in the limit state function. The statistical information of the variables is 

summarized in Table 3.3, where the autoencorrelation function for the stochastic load is 

given as   

   ( ) ( )( )2
1 2 2 1, exp -Y t t t tρ =  (3.21) 



www.manaraa.com

38 

The time interval is given as [1, 30] month, which is evenly divided into 59 time nodes. 

Following the numerical procedure, the proposed approach is employed to solve the 

corroded beam problem. For reliability analysis, 105 MCS samples are generated according 

to the stochastic properties of the random variables and the stochastic process. Fifteen 

training data sets are utilized for training the LSTM models, and the artificial data is 

obtained by using the LSTM models to predict the time-dependent responses given the 105 

random realizations of the stochastic process. Accordingly, GP models can be constructed 

to model the instantaneous response corresponding to each random realization of F(t). As 

a result, time-dependent response predictions for the MCS samples are obtained based on 

the GP models.  

 

Figure 3.7: Geometry and corroded cross section of the beam 

Table 3.3: Variables of the corroded beam example 

Design variable Distribution Mean 
Standard 

deviation 

Yield stress, σ (MPa) Normal 250 24 

Breadth, b0 (m) Normal 0.6 0.01 

Height, h0 (m) Normal 0.06 0.004 
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Load, F(t) (N) Stationary Gaussian. 3500 700 

Corrosion rate, k, (m/month) / 5e-5 / 

Length, L (m) / 5 / 

Material Density, ρ (g/cm3) / 7.85 / 

For comparison purpose, the eSPT method is employed for time dependent reliability 

analysis with a predefined cumulative confidence level 0.999. The reliability calculated by 

direct MCS, proposed approach, and eSPT are given as 0.9756, 0.9748, and 0.9778, 

respectively. The results shows that both eSPT and the proposed approach can achieve an 

accurate time dependent reliability estimation. In eSPT, 84 function evaluations are utilized 

for updating process, which is calculated based on an assumption that the system response 

at any time instant can be directly evaluated and requires only one function evaluation. 

However, evaluating responses at all previous time instant are necessary and should be 

considered into the number of function evaluations. Thus, the actual number of function 

evaluations when employing eSPT for practical problems is calculated as 2946. The 

proposed approach requires 15 time series data, corresponding to 885 function evaluations. 

 

Figure 3.8: Convergence of the loss function for the 1st LSTM model 
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In this study, the LSTM models are trained with a maximum epochs 3000, and the 

convergence of the MSE loss function for the first LSTM is shown in Fig. 3.8. It has been 

observed that all the LSTM models have similar convergence curves. To validate the 

effectiveness of the LSTM, the comparison of the actual and predicted responses using 

LSTMs is shown in Fig. 3.9, where the title shows the information of specified LSTM and 

test sample. The results demonstrate that the LSTM can make accurate response predictions 

for the conditional limit state functions with any random realization of the stochastic 

process. Thought the artificial data is not collected by directly evaluating the limit state 

function, the accuracy is guaranteed due to the benefits of using the LSTM.  
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Figure 3.9: Comparisons between actual responses and estimations from LSTMs 

Samples 

Once all the artificial data has been collected from the multiple LSTM, GP models for 

modeling the instantaneous response can be constructed as introduced in subsection 3.3.2. 

As a result, the time-dependent responses corresponding to each MCS sample can be 

predicted based on the GP models. Similarly, the actual minimum responses for the first 

50 MCS samples are compared to the minimum responses extracted from the GP 

predictions. As shown in Fig. 3.10, the estimated minimum responses are ensured to be 

accurate, which almost overlap the actual one. Considering all the 105
 MCS samples, 

Figure 3.11 shows the comparison between the PDFs of the actual and estimated minimum 

responses. The results reveal that the proposed ensemble learning framework can provide 

accurate predictions of the minimum value of the time-dependent responses within the time 

interval, thus lead to accurate time-dependent reliability approximation. By specifying 

different time intervals, time-dependent reliability can be approximated based on the 

collected overall time-dependent response predictions. The comparison between the 

approximations and accurate results computed by direct MCS is summarized in Table 3.4, 

which indicates that the proposed approach is capable of accurately predicting the time-

dependent reliability within any interested time intervals [0, TI], TI ≤ T.  
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Figure 3.10: Minimum responses comparison of the first 50 MCS samples in the beam 

example 

 

Figure 3.11: PDF curve of the actual and estimated minimum responses of all MCS 

Table 3.4: Time-dependent reliability within different time intervals 

Time Interval Time nodes Estimated R Accurate R 

[1, 6] t1 ~ t11 0.9952 0.9962 

[1, 12] t11 ~ t23 0.9924 0.9932 

[1, 18] t23 ~ t35 0.9862 0.9864 
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[1, 24] t35 ~ t47 0.9824 0.9820 

[1, 30] t47 ~ t59 0.9748 0.9756 

To test the robustness of the proposed approach, time-dependent reliability estimations 

are performed for the corroded beam problem with different modifications. Four different 

scenarios are introduced according to the detailed configurations shown in Table 3.5. With 

the identical settings and procedure as previous, the proposed LSTM-based ensemble 

learning framework is employed for estimating the time-dependent reliability for each 

scenario. To demonstrate the accuracy of the proposed approach, direct MCS method is 

also adopted for accurate reliability analysis, and all the results are presented in Table 3.5. 

For different scenarios, the performances of the proposed approach are quite stable as 

accurate reliability approximations can always be achieved with small relative errors. The 

results demonstrate that the proposed approach is capable of solving time-dependent 

reliability analysis problems involving stochastic process and time parameter.  

 Table 3.5: Robustness test results for corroded beam example 

Scenarios Modification 
MCS 

Reliability 

Estimated 

Reliability 

Relative 

Error 

1 h0 ~ N(0.06, 0.008) 0.9022 0.9014 0.0887% 

2 b0 ~ N(0.4, 0.01) 0.9579 0.9543 0.3758% 

3 
uF = 5500, σF = 800 

b0 ~ N(0.4, 0.01) 
0.9207 0.9222 0.1629% 

4 
uF = 4500, σF = 800 

h0 ~ N(0.055, 0.004) 
0.8538 0.8554 0.1874% 

 

3.4 Conclusion 
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In this work, an LSTM-based ensemble learning framework has been established, 

where Monte Carlo simulation is adopted for estimating the time-dependent reliability 

based on the combination of LSTM network and GP modeling technique. To employ the 

LSTM network for learning the relationship between stochastic processes and time-

dependent system responses, conditional limit state functions are introduced by fixing the 

time-independent random variables. Based on one time-series data, a LSTM model can be 

constructed for modeling a specific conditional limit state function, which can provide 

accurate response predictions given any random realizations of the stochastic processes. 

The time-dependent response predictions collected from multiple LSTM models are 

reorganized according to the realizations of stochastic processes and time instant. Gaussian 

process models are constructed to specifically model the instantaneous response with 

respect to random variables. As a result, time-dependent response predictions for the MCS 

samples can be achieved based on the GP models. The results from two case studies 

demonstrate that the proposed approach can handle complex problems involving multiple 

stochastic processes. The proposed approach is capable of accurately predicting the overall 

time-dependent responses, which ensures the accuracy of reliability estimation and enables 

the capability of depicting the change of reliability with respect to time. The proposed 

approach only requires a small number of time-series data for estimating the time-

dependent reliability, thus it is convenient to apply the proposed ensemble learning for 

practical problems.       
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4 TIME-VARIANT RELIABILITY-BASED DESIGN 
OPTIMIZATION USING SEQUENTIAL KRIGING 
MODELING[83] 

4.1 Introduction 

Though vast efforts have been investigated for time-variant reliability assessment, a 

rigorous formulation is still lacking for generic time-variant reliability-based design 

optimization (tRBDO) and it remains a grand challenge to handle such complexity 

associated with both stationary and non-stationary stochastic processes in tRBDO. In this 

section, a sequential Kriging modeling approach (SKM) is proposed to effectively search 

for optimal designs with the desired system time-variant reliability level over a time period 

under uncertainty. The major contribution of the proposed work lies in developing a 

simulation-based framework for efficiently handling the complexity and high 

dimensionality of generic stochastic processes in time-variant reliability-based design 

optimization. The SKM approach involves a transformation scheme for the dimension 

reduction of performance functions with stochastic processes, and thus enables the 

development of time-independent Kriging models in the transformed space to evaluate 

time-variant system reliability. A design-driven sequential sampling method is then 

developed for managing the surrogate model uncertainty due to lack of data in tRBDO.  

4.2 Sequential Kriging Modeling Approach  

 

4.2.1 Time-variant RBDO Framework 

In engineering design, various sources of uncertainties must be considered to ensure a 
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high-level of system reliability; however, time-related uncertainties such as stochastic 

operating conditions and component deteriorations have not been taken into account in 

RBDO. Therefore, time-variant RBDO (tRBDO) is introduced to obtain optimum solutions 

with the minimum cost while satisfying system reliability requirements over a time period. 

Generally, a time-variant RBDO with stochastic processes Y(t) and time parameter t can 

be formulated as 
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where Cost (X, d) is the object function and [0, T] is the projected lifetime; Y(t) represents 

a vector of stochastic processes; Gi(X, d, Y(t), t) ≤ 0 is defined as the ith failure mode and 

Pf(0, T) is the time-variant probability of failure at time interval [0, T]; d is a vector of 

design variables and X is a vector of random variables; dL and dU are the lower and upper 

boundaries of the design variables; nc, nd, ns, and nr are the numbers of constraints, design 

variables, stochastic processes, and random variables, respectively.  

The proposed sequential Kriging modeling framework aims to handle tRBDO 

involving stochastic processes, which mainly consists of four critical components: (1) 

stochastic processes modeling, (2) stochastic equivalent transformation to handle the high 

dimensionality associated with temporal uncertainty, (3) design-driven adaptive sampling, 

and (4) stochastic sensitivity analysis. To solve a tRBDO problem, a deterministic design 

optimization problem is first solved to obtain the initial design point. Starting with the 

deterministic optimum design as shown in Fig. 4.1, the SKM first generates realizations of 



www.manaraa.com

47 

stochastic processes according to their probabilistic characterizations, and then translates 

time-variant reliability models to time-independent counterparts through the stochastic 

equivalent transformation. It is worth noting that the resulting time-independent reliability 

model can predict time-variant system performance and thus is capable of capturing time-

variant failures in time domain. Kriging surrogate model is then constructed for the time-

independent reliability model and updated by identifying important samples across time-

design domain. To evaluate the time-variant reliability, the resulting Kriging models will 

be mapped back to time-variant space for predicting time-variant system performance, 

which eventually yields the extreme distributions of system performance and time-variant 

probability of failure. The sensitivity of time-variant reliability with respect to design 

variables is approximated based on the first-order score function, and then utilized in the 

optimizer to search for optimum designs iteratively.  
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Figure 4.1: Flowchart of SKM framework for tRBDO  

4.2.2 Random Processes Realization 

In SKM, the first step is to generate random realizations of stochastic processes, 

including Gaussian/non-Gaussian and/or stationary/non-stationary random processes. For 

a stochastic process such as Gaussian process YG(t), it can be prescribed by three functions 

with respect to time t, mean function μY(t), standard deviation function σY(t), and auto 

correlation function ρY(t). In the literature, various methods [84-86] can be used to simulate 

a Gaussian process, such as the Expansion Optimal Linear Estimation method (EOLE) [87], 

and the Orthogonal Series Expansion method [88] (OSE). Assuming the time interval is 

discretized by s time nodes, the covariance between two time nodes is calculated by  

 ( , ) ( ) ( ) ( , )i j Y i Y j Y i jCov t t t t t tσ σ ρ=  (4.2) 
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then the corresponding covariance matrix is derived as 

 

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( , ) ( , )

s

s

s s s s

Cov t t Cov t t Cov t t
Cov t t Cov t t Cov t t

Cov t t Cov t t Cov t t

 
 
 =
 
 
 

∑





   



 (4.3) 

The covariance matrix can be decomposed as Σ = QIQT by using Eigen decomposition 

where Q = [Q1, Q2, …, Qs] is the matrix of eigenvectors and I is a diagonal matrix with the 

corresponding eigenvalues. Then the Gaussian process YG(t) can be expressed as 

 
1

( ) ( ) ( )
p

G y i i i
i

Y t t I Q t Zµ
=

≈ +∑  (4.4) 

where p is the number of dominated Eigen functions and Z = [Z1, Z2, …, Zp] are a set of 

uncorrelated standard normal random variables.  

For non-Gaussian processes, Polynomial Chaos Expansion (PCE) and Karhunen-Loeve 

(KL) expansion are adopted in this work to generate random realizations. According to the 

methodology in Sakamoto and Ghanem [84], a non-Gaussian process YNG(t) can be 

approximated by Hermite orthogonal polynomials, which is expressed as  

 ( )
0

( ) ( ) ( )NG s s
s

Y t b t tξ
=

= Ψ∑  (4.5) 

where the Hermite polynomials Ψs(ξ(t)) are expressed as  

 ( ) ( )
( )

( )
( ) ( 1)
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t
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t
φ ξ

ξ
φ ξ

Ψ = −  (4.6) 

where ϕs(ξ(t)) is the sth derivative of probability density function of the standard normal 

process ξ(t). Then, the approximation of YNG(t) can be written as 

( ) ( ) ( )2 3
0 1 2 3

0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) 3 ( )NG s s

s
Y t b t t b t b t t b t t b t t tξ ξ ξ ξ ξ

=

= Ψ = + + − + − +∑   (4.7) 
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where bs(t), s = 0, 1, 2, 3 are expansion coefficients corresponding to the first four moments 

of the non-Gaussian process YNG(t). For a given non-Gaussian process, the mean μNG(t), 

standard deviation σNG(t), skewness SkNG(t), and kurtosis KμNG(t) are used to calculate the 

expansion coefficients bs(t). Assuming that a non-Gaussian process YNG(t) is expanded in 

a four-terms series (s = 3), the first coefficient b0(t) is equal to μNG(t) as the mean values of 

the Hermite polynomials are zero. According to the orthonormality properties of the 

Hermite polynomials, the ith central moments (i = 2, 3, 4) can be expressed as,  

 ( )1 2 3 0( ( ), ( ), ( )) ( ) , 2,3, 4i
i NGgg b t b t b t E Y t b i = − =   (4.8) 

The values of b1(t), b2(t), and b3(t) is obtained by minimizing the difference between the 

ggi values and the given moments, expressed as  

 
1 2 3

4

1 2 3, , 2
min ( ( ( ), ( ), ( )) )i ib b b i

gg b t b t b t M
=

−∑  (4.9) 

where Mi are the ith central moments of the given non-Gaussian process YNG(t). It is worth 

noting that the expansion coefficients bs(t) are time independent if the non-Gaussian 

process is stationary. Using the orthogonality properties of the Hermite polynomials, the 

relationship between covariance matrix CNG(ti, tj) of YNG(t) and covariance matrix Cξ(ti, tj) 

of ξ(t) can be written as 

 ( )
3

2

1
( , ) ( ) ( !) ( , )

s

NG i j s i j
s

C t t b t s C t tξ
=

= ⋅ ⋅∑  (4.10) 

Given that CNG(ti, tj) can be analytically determined based on the autocorrelation of random 

process YNG(t), the covariance matrix of the standard normal process Cξ(ti, tj) can be 

computed according to Eq. (10). A KL expansion is then able to represent ξ(t) as 
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where p is the number of dominant eigenvalues, λi and fi(t) are the eigenvalues and 

eigenvectors of covariance matrix Cξ(ti, tj), and ξi are independent standard normal random 

variables.  

A stationary non-Gaussian process YNG(t) following a Weibull marginal PDF with the 

shape parameter 1.5 and scale parameter 3 is simulated to generate fifteen random 

realizations as shown in Fig. 4.2. The autocorrelation function is expressed as 

  
2

0.3( )
t

NG t eρ
∆ − 

 ∆ =  (4.12) 

where the given time interval [0, 1] is discretized into 100 time nodes. With the first four 

moments μNG = 2.7082, σNG =1.8388, SkNG = 1.0720, and KμNG =1.3904, a series of Hermite 

polynomials is used to represent the stochastic process with the four expansion coefficients 

estimated by Eq. (9), expressed as 

 ( ) ( )2 3( ) 2.7082 0.9662 ( ) 0.5652 ( ) 1 0.0575 ( ) 3 ( )NGY t t t t tξ ξ ξ ξ= + + − − −

 (4.13) 

With the obtained four expansion coefficients, the covariance matrix of ξ(t) is calculated 

by Eq. (4.10). Through employing the Eigen analysis, the standard normal process ξ(t) is 

then generated from the KL expansion with five dominate Eigen values as shown in Fig. 

4.3. 
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Figure 4.2: Fifteen random realizations of the non-Gaussian process 

 

Figure 4.3: Five dominate eigenvalues in the KL expansion 

4.2.3 Stochastic Equivalent Transformation  

In the time-variant reliability analysis, the limit state is a function of random inputs X, 

stochastic processes Y(t), and time parameter t. In SKM, stochastic equivalent process 
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transformation [8] transforms the origin time-variant limit state function G(X, Y(t), t) to a 

time-independent domain, and instantaneous failure events are described as 

 ( , , ) 0g t′ ′ <X Y  (4.14) 

where continuous random variables Y’ and t’ are translated from stochastic processes Y(t) 

and time t respectively, random variables X remain the same in the transformed input space. 

As shown in Fig. 4.4, with the multiple realizations of the stochastic process Y(t), the 

probability density function (PDF) of Y’ is then obtained by averaging the PDFs of Y(t) 

over the time of interest [0, T]. At each time node, the stochastic process is converted to a 

random variable, and thus the transformed random parameter Y’ is a mixture model 

constructed with random distributions at a set of time nodes. By discretizing the time 

interval into s time nodes, s probability density function can be obtained for the distribution 

of Y(ti), i = 1, 2, …, s. The probability density function of the Y’ is then expressed as 

 
1

1( ) ( ( ))
s

pdf pdf i
i

f Y f Y t
s =

≈ ∑'  (4.15) 

For stationary Gaussian processes, the probabilistic characteristics of Y’ can be obtained 

analytically as the mean and standard deviation functions remain the same over time. In 

terms of general random processes, the realizations of stochastic processes Y(t) in 

subsection 4.2.2 is readily merged to form a set of random sample points that follow the 

distribution of random parameter Y’. In the transformed input space, the random variable 

t’ is treated as a uniform distributed variable over the time interval [0, T] as a failure event 

at any time instant will lead to a system failure.  
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Figure 4.4: Transformation of stochastic process Y(t) 

With the transformed random parameters X, Y’, and t’, the probability of failure in the 

transformed space is defined as 

 [ ]Pr ( , ', ') 0f aveP g t− = <X Y  (4.16) 

where the Pf-ave is the average of the instantaneous probability of failure over the time 

interval [0, T]. It is worth noting that the time-independent model in Eq. (4.16) is able to 

capture time-variant failure events by nature.  

4.2.4 Design-Driven Adaptive Sampling  

With the stochastic equivalent transformation, surrogate modeling techniques are 

employed to predict the time-independent limit state function g(X, Y’, t’). Though a variety 

of surrogate modeling techniques are available, a confidence-based adaptive sampling 

scheme [50] is utilized in the proposed approach to construct metamodels for the time-

independent limit state function mainly due to its ability of efficiently handling surrogate 

model uncertainty. Let W = [X, Y’, t’] denotes the input variables of transformed limit state 
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function g(X, Y’, t’), and w is a random realization of input W, the probability of failure is 

then expressed as 

 ( ) 0
Pr( ( ) 0) ... ( )f ave xg

P g f d− <
= < = ∫ ∫ w

w w w  (4.17) 

where fx(w) is the joint probability density function. By defining the failure region Ωf = 

{w│g(w) < 0}, the probability of failure can be expressed as 

 Pr( ) ( ) ( ) [ ( )]f ave f f x fP I f d E I− Ω
= ∈Ω = =∫w w w w w  (4.18)  

where Ω represents the transformed random input space. E[.] is the expectation operator 

and If(w) is an indicator function to classify success and failure points, defined as 

 
1,   

( )
0,   

f
fI

othewise
∈Ω

= 


w
w  (4.19)  

Let nr and ns denote the number of random variables in X and Y’ respectively, then k = nr 

+ ns + 1 is the number of input variables in W. With the training data set D = [W, G] 

consisting of n input points W and the corresponding responses G, the general form of 

Kriging model is described as 

 ( ) ( ) ( )Kg f S= +w w w  (4.20) 

where gK(w) is the approximation of the performance function g(w) at the point w. The 

first term f(w) is a polynomial term which can be substituted by a constant value μ. S(w) is 

a Gaussian stochastic process with zero mean and a covariance matrix given by  

 2
( , )i j σ=Cov R  (4.21) 

where i and j represent input points wi and wj, respectively, and R is a n × n correlation 

matrix. Various correlation functions are available in the literature, such as Gaussian, 
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rational quadratic, Matern, and exponential correlation function. According to Stein [89], 

the impact on the Kriging prediction from not using the suitable covariance structure is 

asymptotically negligible if the Kriging model can be updated by having more observations. 

In this study, the Kriging surrogate will be iteratively updated by the adaptive sampling 

scheme. Thus, the selection of the Kriging covariance structure will not have significant 

impact on the response prediction, and a stationary and isotropic Gaussian correlation 

function is adopted in this work, expressed as  

 , ,
1

( , ) exp q
k b

i j q i q j q
q

R a
=

 
= − − 

 
∑w w w w  (4.22) 

With n initial samples [W, G], the log likelihood function is given by 

 2 1
2

1 1ln(2 ) ln ln ( ) ( )
2 2

TLogLikelihood n nπ σ µ µ
σ

− = − + + + − −  
R G A R G A

 (4.23) 

where A is an n × 1 unit vector. All the hyper parameters can be obtained by maximizing 

the likelihood function, and then the correlation matrix R can be computed according to 

Eq. (4.22). Let r denotes the correlation vector between a new point w’ and training samples, 

the response and mean square error predicted by the Kriging model are obtained as 

 1( ') ( )T
kg µ µ−= + −w r R G A  (4.24) 
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A R rw r R r
A R A

 (4.25) 

To handle the surrogate model uncertainty e(.) due to the lack of data, adaptive sampling 

scheme should be employed for identifying most useful point and updating Kriging for 

probability analysis in Monte Carlo simulation (MCS).  

In MCS, N Monte Carlo samples are generated based on the randomness of the input 
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variables, denoted as 

 , [ , , ], 1, 2,...mcs
m i i i it i N= =w x y  (4.26) 

where yi
mcs

 is the ith Monte Carlo samples of Y’. For the point wm,i, the limit state function 

g(wm,i) can be approximated by Kriging as a normally distributed random variable, given 

by g(wm,i) ~ N (gK(wm,i), e(wm,i)). The indicator function is thus derived as 

 
,

,
,

1,  g ( ) 0   (failure)
( )

0,  g ( ) 0  (success)
k m i

f m i
k m i

I
<=  ≥

w
w

w
 (4.27) 

The average probability of failure Pf-ave, over the time period [0, T] is thus calculated in 

MCS. The confidence level (CL) at the point wm,i is defined as the probability of correct 

classification, which is expressed as 

 ,
,

,

( )
( )

( )
k m i

m i
m i

g
CL

e

 
 = Φ
 
 

w
w

w
 (4.28) 

where Φ(.) is a standard normal cumulative distribution function. After evaluating the CL 

for all the points in MCS, the cumulative confidence level (CCL) is obtained as 

 ,
1

1 ( )
N

m i
i

CCL CL
N =

= ∑ w  (4.29) 

The CCL indicates the accuracy of Kriging model in predicting Pf-ave in MCS. To enhance 

the fidelity of Kriging model, the most useful point will be identified by maximizing the 

importance measure, which is defined as  

 , , , ,( ) (1 ( )) ( ) ( )m i m i x m i m iCL f eΗ = − ∗ ∗w w w w  (4.30) 

where fx(.) is the joint probability density function of input variables, and e(.) is the 

estimated mean square error of Kriging model prediction. The limit state value at the 
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selected point will be evaluated and then incorporated in the training data set for updating 

the Kriging model. As shown in Fig. 4.5, the design-driven adaptive updating procedure 

will be triggered at each design iteration to search for the important sample points.  

 

Figure 4.5: Illustration of the design-driven adaptive sampling 

4.2.5 Time-variant Reliability Analysis 

With the Kriging surrogate model, the time-variant probability of failure within the 

time interval [0, T] can be approximated by  

 (0, ) Pr( [0, ], ( , ( ), ) 0)f kP T t T g t t≈ ∃ ∈ <X Y  (4.31) 

where gk(.) is the time-variant limit state prediction using the Kriging model. Monte Carlo 

simulation (MCS) method is employed in this work to calculate the time-variant probability 

of failure in Eq. (4.31). In MCS, the first step is to generate N random realizations of X and 

Y(t) as introduced in section 4.2.2 by discretizing the time interval [0, T] with s nodes. For 

the ith realization of random parameter and the stochastic process (xi, yi), the instantaneous 

limit state function g(xi, yi,(j), tj) at the jth time node is predicted directly by the Kriging 

model, and a time-variant failure event occurs if  
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 ,( )1
min  ( , , ) 0K i i j jj s

g y t
≤ ≤

<x  (4.32) 

Clearly, the distribution of the worst performance over time period [0, T] can be obtained 

in Eq. (4.32), and the time-variant probability of failure is then approximated by 

 (0, ) f
f

N
P T

N
≈  (4.33) 

where Nf is the number of time-variant failure samples within the time interval [0, T].  

4.2.6 Sensitivity Analysis of Time-variant Reliability 

In sensitivity analysis, a general form of the time-variant probability of failure is 

rewritten as 

 (0, ) ( ) ( ) [ ( )]
Nf f t x f tR

P T I f d E I− −≡ =∫ X X X X  (4.34) 

where X is the vector of input random variables, fx(X) is the joint probability density 

function, and If-t(X) is the indicator function expressed as 

 1
1,  min  ( , , ) 0  (failure)

( )
0,  otherwise  (success)

K i j jj s
f t i

g x y t
I x ≤ ≤

−

<= 


 (4.35) 

The partial derivative of the probability of failure with respect to the ith design variable di 

is thus derived [47] as 

 
(0, ) ln ( )( ) ( ) = E ( )

N

f x
f t x f tR

i i i

P T fI f d I
d d d− −

∂  ∂∂
=  ∂ ∂ ∂ 

∫
XX X X X  (4.36) 

For independent random variables, the joint probability density function of X is expressed 
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as multiplication its marginal PDFs as 

 
1

( ) ( )
i

nr
x x ii

f f x
=

=∏X  (4.37) 

where nr is the dimension of input variables X. With the time-variant reliability and its 

sensitivity information, the sequential quadratic programming (SQP) [90] is adopted as an 

optimizer to search for optimum solutions iteratively in tRBDO.  

4.3 Case Studies 

In this section, three examples are used to demonstrate the effectiveness of the proposed 

approach for solving the time-variant reliability-based design optimization problems.  

4.3.1 Case Study I: A Mathematical Design Problem 

A two dimensional mathematical time-variant reliability-based design optimization 

problem [11] is formulated as  
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(4.38) 

where the two random design variables X1 and X2 follow normal distributions as X1 ~ N (μ1, 

0.34642) and X2 ~ N (μ2, 0.34642). The target reliability is set to Rt = 0.985 for all three 

probabilistic constraints. To maintain a high-fidelity Kriging model during the design 



www.manaraa.com

61 

optimization, a high-level target cumulative confidence level CCLt = 0.999 is set as a 

criterion in updating Kriging models adaptively, as introduced in subsection 4.2.4. The 

tRBDO problem involves two stochastic processes Y(t)=[Y1(t), Y2(t)], including a non-

stationary Gaussian process Y1(t) and a stationary process Y2(t) with a Weibull marginal 

PDF. The Gaussian process Y1(t) is fully characterized by its mean function μY(t), standard 

deviation function σY(t) and the autocorrelation function ρY(t), given as  

 ( ) 0.1*Y t tµ =  (4.39) 

 ( ) 0.05*Y t tσ =  (4.40) 

 ( ) ( )2
2 1

1 2

-
, exp -

0.001Y

t t
t tρ

 
=  

 
 

 (4.41) 

The scale and shape parameters of the non-Gaussian process Y2(t) are set to 2 and 1.2, 

thus the first four moments can be directly obtained as mean μNG = 1.8813, standard 

deviation σNG = 1.5745, skewness SkNG = 1.5211, and kurtosis KμNG =3.2357. The 

autocorrelation function of Y2(t) is given by  

 ( ) ( )2
2 1

1 2

-
, exp -

0.01NG

t t
t tρ

 
=  

 
 

 (4.42) 

Following the procedure outlined in subsection 4.2.2, the time interval [0, 1] is discretized 

into 100 nodes evenly, and 106 random realizations for each stochastic process are 

generated for the time-variant reliability analysis. The first fifty realizations of Y1(t) and 

Y2(t) are shown in Fig. 4.6. 
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Figure 4.6: 50 realizations of the Y1(t) and Y2(t) 

The first step of the SKM approach is to obtain an initial design point by solving the 

corresponding deterministic optimization problem, where the stochastic processes in G2 

are fixed to its mean. The deterministic design optimization starts with d0 = [5, 5], and 

approaches the deterministic optimum design dd = [8.5770, 1.4294] after seven iterations. 

As the second constraint G2 contains stochastic processes, the time-variant limit state 
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function of G2 is converted to the time-independent one using stochastic equivalent 

transformation. The input domains of three Kriging models gK1, gK2, and gK3 are defined 

as W1 = W3 = [X1, X2,], W2 = [X1, X2, Y1’, Y2’], respectively, where the PDFs of Y1’ and Y2’ 

are obtained as introduced in subsection 4.2.3. Then the Latin Hypercube sampling method 

(LHS) is utilized to generate 20 initial sample points, and they are combined with seven 

sample points that evaluated during deterministic design for constructing initial Kriging 

models. By setting the deterministic optimum design dd as the initial design point in tRBDO, 

the optimum design dopt = [6.7733, 3.3718] is obtained after 8 iterations. The iterative 

history of reliabilities for three constraints, design points, and cost function values are 

summarized in Table 4.1. It is worth noting that the reliabilities are estimated by the 

updated Kriging models, denoted by R1
SKM, R2

 SKM, and R3
 SKM, respectively. 

 H:\MATLAB\SAV ECODE \skocase13rdrevi  

 

 

Figure 4.7: Samples for constructing gK1 and gK3 Kriging models 

During the tRBDO process, the design-driven adaptive sampling scheme is triggered 

to identify 57 samples and 9 samples for updating the Kriging model gK2 and gK3, 

respectively. There is no need to update gK1 since the target CCLt can always be satisfied 
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in the design optimization process. Figure 4.7 shows the sample points for constructing the 

Kriging models, including 20 LHS samples, 7 samples evaluated during deterministic 

design optimization, and the additional nine samples identified through design-driven 

adaptive sampling for gK3. The comparison between true limit state functions (dashed lines) 

and estimated results (solid lines) by updated Kriging models is shown in Fig. 4.8, where 

the time-variant limit state function G2 is depicted at Y1(t) = 0 and Y2(t) = 1.8813. A high 

accuracy level of Kriging model gK2 can be obtained in the area near to the optimum design 

dopt = [6.7733, 3.3718] because the most useful samples selected by the design-driven 

adaptive sampling scheme are located in the critical area of interest as needed.  

 

 

Figure 4.8: Approximated limit state functions by Kriging model vs. true limit state 

functions  

The overall tRBDO process is shown in Fig. 4.9, where the first three designs are 

marked with numbers and point ‘1’ is the deterministic optimum design point. The 
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convergence of design points with respect to design iterations is detailed in Fig. 4.10 while 

the time-variant reliabilities for three constraints also converge to the target reliability 

0.9850 within 8 design iterations as shown in Fig. 11. 
  

 

 

 

Figure 4.9: Iterative design points in tRBDO 
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Figure 4.10: Design history at each iteration 

For the purpose of comparison, the simulation-based time-variant reliability analysis 

approach SPCE [91], together with the first-order score function method (SF) for 

sensitivity analysis, are employed to solve the same tRBDO problem, denoted as 

SPCE&SF. Furthermore, direct Monte Carlo simulation is utilized to verify the accuracy 

of the proposed method. As shown in Table 4.2 where the reliability R1, R2, and R3 are 

verified through direct MCS, the SPCE&SF approach obtains an optimum design after 17 

iterations while requiring 459 function evaluations in total. However, the resulting 

optimum design violates the probabilistic constraints as the reliability R2 and R3 are less 

than the target 0.985 and the error of time-variant reliability for performance function G2 

is 6.36%. With the proposed SKM approach, the optimum design is close to the optimum 

solution obtained from direct MCS and satisfies the reliability requirements. In addition, it 

is observed that the proposed SKM approach only needs 147 function evaluations to obtain 

an accurate optimum design, including 27, 84, and 36 function calls for Kriging model gK1, 

gK2, and gK3, respectively. The results demonstrate that the proposed approach can 

efficiently handle stochastic processes and solve time-variant RBDO problems effectively.  
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Figure 4.11: Reliabilities of three constraints at each design iteration 

 Table 4.1: tRBDO design history for case study I 

Iterations Design Variables Reliabilities Cost 
 

X1 X2 R1
SKM R2

SKM R3
SKM  

1 8.5770 1.4294 0.9995 0.2714 0.4990 2.8524 

2 7.3334 3.0961 1 0.9771 0.8649 5.7627 

3 7.0291 3.2763 1 0.9844 0.9497 6.2472 

4 6.8607 3.3431 1 0.9851 0.9765 6.4824 

5 6.7868 3.3676 1 0.9850 0.9839 6.5807 

6 6.7732 3.3721 1 0.9850 0.9849 6.5989 

7 6.7732 3.3720 1 0.9850 0.9849 6.5988 

8 6.7733 3.3718 1 0.9850 0.9849 6.5985 

Table 4.2: Comparison of optimum results for case study I 

 Optimum R1 R2 R3 Cost #F 

SKM [6.7733, 3.3718] 1 0.9839 0.9849 6.5984 147 

SPCE&SF [6.9540, 3.0661] 1 0.9224 0.9831 6.1122 459 
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MCS [6.7634, 3.3883] 1 0.9850 0.9850 6.6249 3*106 

 

4.3.2 Case Study II: A Cantilever Beam Design Problem 

In the second study, a cantilever beam under an external load is introduced as shown in 

Fig. 4.12. The material of the beam is assumed to be SAE-1008, a standard grade carbon 

steel which is widely used in auto manufacture, oil drum, and transformer’s tank panel. 

The length L is fixed to 500 mm while height h and width b are treated as two design 

variables, denoted as d = [h, b]. An external load F(t) is applied on the tip of this beam and 

depicted as a stationary Gaussian stochastic process with 170 kN mean and 10 kN standard 

deviation. The time interval of interest is [0, 1], and all random variables and stochastic 

process are detailed in Table 4.3. 

Table 4.3: Cantilever beam specifications 

Random variable Distribution Mean value Standard deviation 

Length, L / 500 mm / 

Width, b Normal b 3.436 mm 

Height, h Normal h 3.436 mm 

External Load F(t) Normal 170 kN 10 kN 
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Figure 4.12: Cantilever beam geometry 

For this cantilever beam, the stress at position x can be expressed as 

 2

6 ( ) ( )( ) F t L xS x
bh

⋅ ⋅ −
=  (4.43) 

According to the geometry of the beam, the maximum stress at x = 0 can be expressed as 

  max 2

6 ( )(0) F t LS S
bh

= =  (4.44) 

Given the yield strength of SAE-1008 Sy = 275 MPa, the limit state function of this beam 

is defined as 

 max( , ( )) yG F t S S= −d  (4.45) 

Thus, for any time instant t within [0, 1], G(d, F(t)) < 0 indicates failure due to plastic 

deformation. The size of cross section is formulated as an objective function, and the 

boundaries of the two design variables are given as 1) the height h should be within [140, 
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180] in millimeters and 2) the width b should be within [50, 150] in millimeters. Therefore, 

the cantilever beam tRBDO problem is formulated as 
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In this study, a target reliability is set to Rt = 0.985 and a target cumulative confidence 

level CCLt is set to 0.999. The deterministic design starts with the mean value of the design 

variables d0 = [160, 100] and terminates at the deterministic optimum design dd = [154.7946, 

77.3973], while 11 points are evaluated during the deterministic optimization process. By 

employing the stochastic equivalent transformation, the stochastic process F(t) is 

transformed to a random variable F’, which follows a normal distribution with 170 kN 

mean and 10 kN standard deviation since F(t) is a stationary Gaussian process. By 

discretizing the time interval into 100 time nodes, 106 random realizations are obtained as 

introduced in section 4.2.2. To solve the tRBDO problem, a total number of 20 initial 

samples points are generated by Latin hypercube sampling scheme and evaluated for the 

performance function. The initial Kriging model is then constructed based on the available 

31 samples, and 106 random realizations of the stochastic process F(t) are generated for the 

time-variant reliability analysis. The tRBDO process starts with the deterministic optimum 

design dd, and it converges to an optimum design dopt = [166.1193, 87.4383] after 14 

iterations. As shown in Fig. 4.13, the approximated limit state function is compared with 

the true responses while the stochastic load is fixed to 170 kN. It shows that the high-

fidelity Kriging model is able to accurately approximate limit state functions.  
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Figure 4.13: High fidelity of the updated Kriging model at h, b design space. 

 

Figure 4.14: Sample points for constructing Kriging model. 
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Figure 4.15: Design history at each iteration. 

In the SKM approach, the Kriging model is automatically updated through the design-

driven adaptive sampling at each design iteration and a total number of 35 most useful 

sample points are identified during the overall tRBDO process. All the selected samples 

for constructing the Kriging model are plotted in Fig. 4.14, where black nodes represent 

the initial points and red stars denote the most useful samples. As shown in the figure, 

almost all the selected samples are located on the failure surface, ensuring an efficient 

Kriging updating procedure. Figure 4.15 shows the iterative history of design variables 

during tRBDO process while Table 4.4 provides the reliabilities RSKM, design points, and 

cost at each design iteration.  

For the comparison purpose, the SPCE&SF method and direct MCS method are also 

employed to solve the tRBDO problem for the cantilever beam case study, and the optimum 

solutions and number of function evaluations from three methods are listed in Table 4.5. 

To verify the optimum designs obtained by the SKM and SPCE&SF, MCS with 106 
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samples is employed as the reference to compute the reliabilities. An optimum design is 

obtained after 40 iterations by SPCE&SF as [167.7387, 85.6917], while 400 function 

evaluations are required to construct a SPCE model in design optimization. The result 

shows that both SKM and SPCE&SF approach can accurately solve the time-variant 

reliability-based design optimization problem involving stationary Gaussian process. 

However, the SKM approach is more efficient as it only requires 66 functions evaluations 

for achieving the optimum design. 

Table 4.4: tRBDO design history for case study II 

Iterations Design Variables RSKM Cost 
 

h b   

1 154.7946 77.3973 0.0363 232.1919 

2 180.0000 112.2090 1.0000 292.2090 

3 179.3359 111.2309 1.0000 290.5669 

4 176.0155 106.3408 1.0000 282.3563 

5 164.3941 89.2254 0.9789 253.6194 

6 164.7613 89.5981 0.9841 254.3594 

7 165.1484 89.3034 0.9848 254.4517 

8 167.2207 86.9177 0.9852 254.1384 

9 170.7791 83.0660 0.9840 253.8451 

10 169.8417 84.0105 0.9849 253.8523 

11 165.1435 88.1642 0.9830 253.3078 

12 166.5170 87.0030 0.9847 253.5200 

13 166.1181 87.4380 0.9850 253.5561 

14 166.1193 87.4383 0.9850 253.5576 

Table 4.5: Comparison of optimum results for case study II 
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Optimum Reliability Cost #F 

SKM [166.1193, 87.4383] 0.9856 253.5576 66 

SPCE&SF [167.7387, 85.6917] 0.9848 253.4304 400 

MCS [168.4629, 84.9994] 0.9850 253.4623 106 

4.3.3 Case Study III: Aircraft Tubing Design 

In industry, tubing assemblies have been widely integrated in many subsystems, for 

example, fuel system and hydraulic system. Catastrophic system failure can be caused by 

the potential failure of aircraft tubing, and determining the optimized geometry of tubing 

under the time-variant uncertainties becomes extremely important in the early design stage. 

In this study, a twisted tubing design problem is solved by employing the proposed SKM 

approach.  

A twisted tube made of steel (E = 200 GPa, v = 0.27) is shown in Fig. 4.16. The inner 

diameter D, thickness T, the radius of bending for two bended tube R1 and R2 are design 

variables that follow normal distributions, detailed in Table 4.6.  

 

Figure 4.16: Geometry of twisted aircraft tubing. 

Table 4.6: Aircraft tubing specifications 
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Design variable Distribution Mean value STD Boundary 

Inner diameter, D Normal μD 0.1 mm [14mm, 16mm] 

Thickness, T Normal μT 0.05 mm [2mm, 2.6mm] 

Radius of bending, R1 Normal μR1 0.1 mm [14mm, 16mm] 

Radius of bending, R2 Normal μR2 0.1 mm [14mm, 16mm] 

The tube will experience time-variant pressure P(t) during the operation, which is 

applied on the inner surface of the twisted tube. The inner pressure is modeled as a 

stationary Gaussian process with 30 MPa the mean and 1 MPa standard deviations 

respectively. The time interval of interest is [0, 1] and the autocorrelation function of P(t) 

is the same as shown in Eq. (4.41). A finite element model has been developed in ANSYS 

to obtain the maximum von Mises stress of the tube. A failure is defined as the maximum 

von Mises stress is greater than the yield strength σy = 235 MPa, and the design objective 

is to minimize the total volume of the twisted tube, expressed as 
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Thus, the tRBDO problem for the aircraft tubing design is formulated as, 
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In this study, both the targets of reliability and the cumulative confidence level are set 

to 0.98. Starting with the design [15, 2.3, 15, 15], a deterministic design optimization 

problem is first solved to obtain the initial design point for tRBDO. By using the finite 
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difference method to provide the sensitivity, the deterministic solution dd = [14, 2, 14.5420, 

14.4637] is obtained after 10 iterations, and 50 samples points are evaluated during the 

deterministic design process. In the SKM approach, the time-variant limit state function 

with stochastic processes is first converted into time-independent counterpart through the 

stochastic equivalent transformation. To construct surrogate model for the finite element 

simulation, an Kriging model is trained based on the 50 sample points that evaluated in 

deterministic optimization and 40 random samples generated by Latin hyper cube sampling. 

The time interval [0, 1] is evenly discretized into 100 time nodes, then 106 random 

realizations of the stochastic process P(t) is generated for time-variant reliability analysis. 

The optimum design is achieved after 14 iterations as dopt = [14.0000, 2.2215, 15.7457, 

15.7297], and the iterative design history for the four design variables is shown in Fig. 4.17. 

The convergence of the time-variant reliability and the total volume of the twisted tube are 

plotted in Figure 4.18. 

 

Figure 4.17: Design variables at each design iteration. 
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The design-driven adaptive sampling scheme is employed in the tRBDO to ensure that 

the CCL of the Kriging model satisfies the target value, and 145 most useful samples are 

identified until the optimum design is obtained. With a total number of 235 function 

evaluations in the tRBDO, the total volume of the twisted tube is minimized to 13522.173 

mm3 while the reliability is approximated as 0.9803. Figure 4.19 shows the stress contour 

of the optimum design in ANSYS while the inner stress is set to 30 MPa.  

 

Figure 4.18: Reliability and total volume at each design iteration. 
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Figure 4.19: Stress contour given by ANSYS (cutting plane is normal to view). 

4.4 Conclusion 

This work presents a sequential Kriging modeling approach to accurately evaluate 

time-variant reliability and efficiently carry out the time-variant RBDO involving 

stochastic processes. To reduce the high dimensionality associated with time-variant 

uncertainties, the SKM approach first converts time-variant limit state functions to time-

independent counterparts using stochastic equivalent transformation, and then build 

Kriging surrogate models to predict the responses of time-variant limit state functions. To 

enhance the accuracy of time-variant reliability approximations in tRBDO, a design-driven 

adaptive sampling scheme is developed to update surrogate models by identifying most 

useful sample points within time-variant random space. As a result, the system failures can 

be captured with the high-fidelity Kriging models to predict the time-variant reliability in 

MCS. With the sensitivity information obtained by the first-order score function, sequential 

quadratic programming (SQP) is adopted as an optimizer to search for optimal solutions 
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iteratively. The results of three case studies indicate that the sequential Kriging modeling 

approach is capable of effectively handling tRBDO problems involving stochastic 

processes. 
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5 SURROGATE MODEL UNCERTAINTY 
QUANTIFICATION FOR RELIABILITY-BASED DESIGN 
OPTIMIZATION[92] 

5.1 Introduction 

Surrogate models have been widely employed as approximations of expensive physics-

based simulations to alleviate computational burden in reliability-based design 

optimization. Ignoring the surrogate model uncertainty due to lack of training samples will 

lead to untrustworthy designs in product development. This work addresses surrogate 

model uncertainty in reliability analysis using equivalent reliability index (ERI) and further 

develops a new smooth sensitivity analysis approach to facilitate the surrogate model-based 

product design process. Based on the Gaussian process modeling, Gaussian mixture model 

is constructed for reliability analysis using Monte Carlo simulation. To propagate both 

input variation and surrogate model uncertainty, the probability of failure is approximated 

by calculating the equivalent reliability index using the first and second statistical moment 

of the GMM. The sensitivity of ERI with respect to design variables is analytically derived 

based on the GP predictions. Three case studies are used to demonstrate the effectiveness 

and robustness of the proposed approach. 

5.2 Equivalent Reliability Index Method 

Reliability analysis aims to evaluate the probability that engineering system 

successfully performs functionality under input variations. The system fails if the limit 

state value is less than zero, and the probability of failure Pf can be defined as a multi-

dimensional integral  
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x x x  (5.1) 

where G(x) is the limit state function, x represents the vector of random input variables, 

fx(x) represents the joint probability density function of the input variables, and FG(.) 

represents the cumulative distribution function of G(x). As it is challenge to obtain the 

exact value of the probability of failure for complex systems in Eq. (5.1), simulation-based 

methods such as MCS are often utilized to approximate the probability of failure as  

 ( ) ( ) ( )f f x fP I f d E I
Ω

 = =  ∫ x x x x  (5.2) 

where Ωf represents the failure region in the input space Ω, E[.] is the expectation operator, 

and the indicator function If(x) is defined as 

 
1,   ( ) 0

( )
0,   f

G
I

otherwise
<

= 


x
x  (5.3) 

To reduce the tremendous computational cost of the limit state function evaluations, 

surrogate modeling techniques are generally employed to represent the limit state function. 

Thus, the performance function in Eq. (5.3) is replaced by the surrogate model predictions, 

and the predicted response will be used to identify potential system failures. Inappropriate 

managing surrogate model uncertainty may introduce significant errors in predicting 

system reliability and searching for optimal designs, especially for cases when only a 

limited number of training data is available for construing surrogate models. In this work, 

Gaussian process (GP) modeling is employed to construct the surrogate model for 

reliability-based design optimization. As a typical nonparametric regression technique, GP 

modeling is one of the most common methods that has been widely used in engineering 
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design applications. By using the GP model to represent the limit state function, system 

performance at any given point can be predicted with a mean squared error (MSE) that 

gives an estimation of the prediction accuracy. For a performance function G(x), a GP 

model can be developed based on an training data set D = [X, Y], where X = [x1, x2, …,xn], 

and xi (i=1, 2, …, n) represents the random realizations of input variables x, and Y = [G(x1), 

G(x2), …, G(xn)] represents the evaluated performances corresponding to each random 

sample in X. In the GP model, the system performance is assumed to follow a multivariate 

Gaussian distribution, which is expressed as  

 ( )ˆ ( ) ~ ( ) , ( , )i jg GP Rx h x β x x  (5.4) 

where h(x)β is the prior mean function, h(x) is a row vector of regression functions (i.e., 

constant, linear, etc.), β is a column vector of the coefficients, and R(xi, xj) is the covariance 

function that characterizes the correlation between the responses at points xi and xj, 

expressed as 

 
22

, ,
1

( , ) exp
k

i j p i p j p
p

R σ ω
=

 
= − − 

 
∑x x x x  (5.5) 

where xi,p represents the pth input variable in the ith random realization, k is the dimension 

of x, ω = [ω1, ω2, …, ωk,] is the roughness parameter to capture the nonlinearity of the 

process, and σ2 is an unknown variance. A GP model can be fully characterized by all the 

aforementioned unknown hyperparameters β, σ2
, and ω, while the maximum likelihood 

estimation (MLEs) method can be used to estimate the values of those hyperparameters 

based on the given data set D. Once obtaining the hyperparamaters, the GP model is 

capable of predicting the response at any point x’ as a conditional Gaussian distribution, 
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given as 

 ( )ˆ ( ') ~ ( ') , ( ')gp gpg N vµx Y x Y x Y  (5.6) 

where the prediction mean is  

 1( ') ( ) ( )T
gpµ −= + −x Y h x β r R Y Hβ  (5.7) 

where r is the correlation vector between x’ and the existing training points, H = [h(x1), 

h(x2), …, h(xn)] is a n × 1 unit vector if the prior mean function is a constant. The prediction 

variance is written as  

 ( ){ }12 1 1 1 1( ') 1 ( ) ( )
TT T T T T T

gpv σ
−− − − −   = − + − −   x Y r R r h x H R r H R H h x H R r

 (5.8) 

In the GP model, the surrogate model uncertainty is quantified by the prediction 

variance as shown in Eq. (5.8), which is also known as the mean squared error of the 

prediction. Ignoring surrogate model uncertainty in RBDO may result in underestimating 

the probability of failure and potentially infeasible solutions. In this work, the probability 

of failure is reformulated by concurrently incorporating input variation and surrogate 

model uncertainty in uncertainty propagation, which is expressed as 

 ( ) ( ) ( ) ( )
0

ˆˆ ˆ ˆPr( ( ) 0) Pr 0 (0) ( )gG g F p g dg
−∞

< ≈  <  = =  ∫x Yx x Y x Y x  (5.9) 

where ĝ(x)|Y represents the conditional probability distribution of system performance 

obtained by the GP model; Fĝ(x)|Y(.) represents the cumulative distribution function of the 

ĝ(x)|Y ; Y is the vector of the observations; p(.) represents the probability density function, 
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and x is an input vector contains k random variables xi, i = 1, 2, …, k. It is worth noting 

that the GP model prediction ĝ(.)|Y for a single point is a normal random variable given 

the observation Y, and ĝY(.) is adopted to represent the conditional probability distribution 

ĝ(.)|Y for the sake of simplicity. By treating the GP model predictions as normal distributed 

random variables, a point-to-distribution mapping relationship can be obtained to take 

surrogate model uncertainty into account in uncertainty propagation as shown in Fig. 5.1. 

Given the randomness of the input x, the conditional PDF of the response prediction for a 

random realization xr is given by  

 ( ) ( )ˆ ( ) ( ), ( )r gp r gp rp g N vµ=Y x x x  (5.10) 

where μgp(.) and vgp(.) are the mean and variance of GP model prediction, which vary over 

the input domain. To concurrently propagate input variation and surrogate model 

uncertainty, a Gaussian mixture model (GMM) is developed to capture the probability 

density function of system performance, which is expressed as 

 ( )
1 1

ˆ( ) lim ( ) lim ( ), ( )
N N

i i i gp i gp iN Ni i
p GMM p g N vπ π µ

→∞ →∞
= =

 = = ∑ ∑Y
r r rx x x  (5.11) 

where xri represents the random realizations of the input x, πi is the weight of the ith 

component normal distribution, and the summary of πi is equal to one. As shown in Eq. 

(5.11), the prediction at a given point ĝY(xri) is treated as a component normal distribution 

of the GMM, and the Gaussian mixture model consists of infinite number of normal 

distributions.  
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Figure 5.1: Point-to-distribution mapping relationship 

In this study, we employ the MCS to approximate the PDF of the GMM according to 

the response predictions from GP models. In MCS, N Monte Carlo samples are first 

generated according to input randomness, denoted as Xm = (xm,1, xm,2, …, xm,N). The 

performance prediction of the GP model at the ith sample point xm,i is a normally distributed 

random variable given by ĝY(xm,i) ~ N(μgp(xm,i),vgp(xm,i)). Thus, a total number of N normal 

distributions can be obtained after predicting the responses of all the MCS samples, where 

the prediction mean and variance for the ith distribution are denoted as μi = μgp(xm,i) and vi 

= vgp(xm,i) for simplicity. According to Eq. (5.11), the probability density function of the 

GMM can be rewritten as 

 ( )
1

( ) ,
N

i i i
i

p GMM N vπ µ
=

≅ ∑  (5.12) 

In reliability analysis, all MCS samples are equally important since they are 

simultaneously generated from the same joint PDF and represent the random realizations 

of the given input x. Therefore, the weight πi of each component normal distribution in the 
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GMM is actually the same, as π1 = π2 = … = πi =1/N. The mean and variance of the GMM 

can be directly calculated based on the statistical moments of the N component normal 

distributions. Assuming that each normal distribution is fully characterized by M random 

samples, denoted as s1, s2, …, sM, where M is a sufficient large number. The mean and 

variance of the ith normal distribution can be characterized as 
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= =∑  (5.13) 
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Since the Gaussian mixture model is constructed by the N normal distributions, the 

total number of samples is N × M, and mean and variance of the GMM can be calculated 

as  
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Assuming that the resulting GMM follows a normal distribution with mean μGMM and 

variance vGMM, an equivalent reliability index βe is defined in this work as 
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where σGMM represents the standard deviation. Therefore, the reliability estimation with the 

consideration of both input variation and surrogate model uncertainty is expressed as  

 ˆ ( )eR R β≈ = Φ  (5.18) 

The procedure of reliability analysis using the proposed ERI method is summarized in 

Table 5.1. 

Table 5.1: Procedure of reliability analysis using ERI approach 

Steps Procedure 

Step 1: Identify initial data set D, generate N MCS samples Xm according to input 

randomness. 

Step 2: Develop a Gaussian process model based on the data set D; 

Step 3: Predict the responses for all the N samples and collect the mean μi and 

variance vi of each normal distribution;  

Step 4: Calculate the mean and variance of the Gaussian mixture model using Eq. 

(15) and (16), respectively: 

Step 5: Estimate the reliability using the equivalent reliability index. 

 

5.3 Stochastic Sensitivity Analysis  

In RBDO process, gradient-based optimization methods require the sensitivity 

information to search for optimal solutions, such as the sequential linear programming 

(SLP) [93] and the sequential quadratic programming (SQP) [94]. Sensitivity information 

of reliability with respect to design variables affects the convergence process, thus an 
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accurate sensitivity analysis is essential for RBDO. The existing simulation-based 

sensitivity analysis methods such as first-order score function method [95] lack the 

capability of handling surrogate model uncertainty. To facilitate the RBDO process, this 

work presents a new method to calculate the sensitivity of ERI with respect to design 

variables. 

In RBDO, the reliability index should be greater than a predefined target, expressed as  

 Pr( ( ) 0) tG β≥ ≥ Φx ( )  (5.19) 

In the ERI approach, the reliability is estimated as the standard normal cumulative 

distribution function of the ERI, denoted as Φ(βe). Thus, the probabilistic constraint in Eq. 

(19) can be transformed to an equivalent form, expressed as  

 e tβ β≥  (5.20) 

where βe is the equivalent reliability index and βt is the target reliability index. Instead of 

using the sensitivity of reliability, the sensitivity of ERI with respect to design variables is 

required for design optimization. Taking the partial derivative of the ERI with respect to 

the design variable d yields  
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∂   ∂ ∂ ∂ = = −
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 (5.21) 

where the sensitivity is decomposed by the gradient of the mean μGMM and the variance 

vGMM. According to the Eq. (5.15) and (5.16), the two gradient terms can be further derived 

as 
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while the gradient for the variance of the GMM can be written as 
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According to Eq. (5.22) and (5.23), the two gradient terms can be directly calculated 

based on the first-order derivative of the prediction mean and variance. In the GP model, 

the prediction mean and variance are functions of the given point and the initial data set, 

as shown in Eq. (5.7) and (5.8). Taking the derivative of the prediction mean and variance 

with respect to design variable x, we can obtain 

  
( ) ( )GP

h r
µ∂

= + −
∂

-1x J β J R Y Hβ
x

 (5.24) 

and 

 ( ) ( )12 1 1( )
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R J H R H H R J J
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 (5.25) 

where H is a unit vector, r(x) represents the correlation vector between the point x and the 

training sample points, and Jh and Jr are the Jacobian of h(x) and r(x). As a result, the values 

of the first-order derivative of the prediction mean and variance can be easily obtained 

through the GP model. After evaluating all the MCS samples, the required gradient 

information can be obtained based on Eq. (5.22) and (5.23), and finally, the sensitivity for 

the current design point can be derived accordingly.  
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Figure 5.2: GP modeling of the limit state function 

A limit state function G(x) = x3/20 – 3 is employed to demonstrate the effectiveness of 

the proposed sensitivity analysis approach. Three samples x = 0, 2, 5 are used to construct 

the surrogate model, as shown in Fig. 5.2. The design variable x is treated as a normally 

distributed random variable with 0.12 standard deviation while the failure is defined as the 

function value is less than zero. For a given design point, 106 MCS samples are generated 

for reliability analysis using ERI approach. According to the gradient of prediction mean 

and variance of each MCS sample as calculated in Eq. (5.24) and (5.25), the sensitivity of 

ERI with respect to x can be obtained by Eq. (5.21). For comparison purpose, the first-

order score function method is employed to compute the sensitivity for the probability of 

failure with respect to the input x, as shown in Fig. 5.3a, where the red dashed line 

represents the zero approximation. It is observed that the sensitivity approximated by SF 

method is zero when x is within the range [2, 2.8] and [3.6, 6], where the reliability 

approximation is either zero or one. On the contrary, the smooth sensitivity evaluated by 

the proposed method can avoid the zero estimation as shown in Fig. 5.3b. Therefore, the 
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stability of RBDO using ERI approach is ensured by the proposed sensitivity analysis.   

  

Figure 5.3: Approximated sensitivity by a) first-order score function method and b) 

proposed approach. 

5.4 RBDO Using Equivalent Reliability Index  

In this section, the ERI approach will be integrated with sensitivity analysis approach 

for RBDO to achieve a reliable optimal system design. The design objective is to minimize 

the cost while ensuring a target reliability index, and the formulation of RBDO using ERI 

approach is given as  
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     (5.26) 

where βe
i represents the equivalent reliability index of the ith limit state function Gi(X, d), 

βt
i is the corresponding reliability target; Cost(d) is the objective function; d is the vector 

of design variables and X is the vector of random variables; and nc, nd, and nr are the 

number of constraints, design variables, and random variables, respectively.  
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As shown in Fig. 5.4, the first step of employing RBDO using ERI approach is to 

construct a GP model corresponding to each limit state function. For a design problem with 

k random variables, a set of n initial samples within the design domain are first generated 

according to the Latin hypercube sampling scheme, denoted as X = [x1, x2, …, xn], where 

each initial sample is a vector of k random variables. Then the training data set 

corresponding to each limit state function can be obtained after evaluating the true 

performances of the initial samples, denoted as Dj= [X, Yj], where j = 1, 2, …, nc represents 

the jth limit state function. Consequently, nc GP models can be constructed accordingly as 

discussed in section 5.2, and the RBDO will be performed iteratively staring at an initial 

design. To provide a reliable optimal design with the consideration of surrogate model 

uncertainty, the proposed ERI approach is employed to estimate the reliability in each 

design iteration. In reliability analysis, N Monte Carlo samples are first generated 

according to the randomness of the current design point, denoted as Xm = [xm,1, xm,2, …, 

xm,N]. For each limit state function, the constructed GP model is used to predict the response 

of the MCS samples, while the prediction is treated as a normally distributed random 

variable as shown in Eq. (5.7) and (5.8). After predicting the responses for all MCS 

samples, the obtained N normal distributions are combined to form a Gaussian mixture 

model, which represents the estimated random output of the current design. The GMM is 

assumed to follow a normal distribution with the mean μGMM and variance vGMM., which can 

be calculated based on the means and variances of the component normal distributions, as 

illustrated in Eq. (5.15) and (5.16). An equivalent reliability index βe can be calculated as 

the ratio of the mean μGMM to the standard deviation σGMM, and the reliability R is 

approximated by the standard normal cumulative distribution function of the ERI. In the 
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proposed work, the sensitivity of ERI with respect to design variables is required in each 

design iteration. First, the gradient information of the prediction mean and variance for 

each MCS sample are first calculated according to Eq. (5.24) and (5.25). Then the two 

gradient terms of the mean μGMM and variance vGMM can be calculated and used to derive 

the sensitivity of ERI as shown in Eq. (5.21). Then the sequential quadratic programming 

(SQP) technique is employed as the optimizer to generate the new design point, and the 

iterative design process will be repeated until an optimal design is achieved.  

 

Figure 5.4: Flowchart of the RBDO using ERI 

5.5 Case Studies 

In this section, three examples are used to demonstrate the effectiveness of the 

reliability-based design optimization using ERI approach, including a mathematical design 

problem, a vehicle side crash design and an aircraft tubing design problem.   
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5.5.1 Case Study I: A Mathematical Design Problem 

The first case study considers a benchmark mathematical problem involving two 

random design variables and three constraints. The RBDO problem is formulated as   
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where two random design variables d =[μ1, μ2] are both normally distributed as X1 ~ N (μ1, 

0.34642) and X2 ~ N (μ2, 0.34642). The target reliability level is set to 0.985 for all three 

constraints, thus the target reliability index βt
i, (i = 1, 2, 3) can be calculated as 2.1701. To 

investigate the effectiveness and robustness of the proposed approach, the design problem 

is solved in two different scenarios. In the first scenario, the RBDO using ERI approach is 

performed while only 6 initial training samples are used to construct the GP model. The 

goal is to test the performance of the ERI approach for solving RBDO problems with 

limited data. In the second scenario, the number of initial training samples has been 

increased to 15, aiming to investigate if the proposed approach is applicable for RBDO 

when the training data is sufficient.  

5.1.1 First scenario: Insufficient data. The first step of employing the proposed ERI 

method in RBDO is to build the surrogate GP model for each probabilistic constraint. 6 

initial samples are first generated by using Latin hypercube sampling within the design 

domain, and evaluated for the limit state values. Consequently, three GP models can be 
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constructed based on the obtained data sets D1, D2, and D3. Following the procedure 

introduced in section 5.4, RBDO using ERI approach is performed by setting an initial 

design point d0 = [5, 5]. In each design iteration, 106 MCS samples are generated based on 

the randomness of the current design point to conduct the reliability analysis using ERI 

approach, while the design sensitivity can be accurately obtained as introduced in section 

5.3. Therefore, an optimal design dopt = [6.4965, 3.5679] is achieved after 12 iterations. 

The iterative design history of reliabilities, design points, and cost function values are 

detailed in Table 5.2, where the values of reliabilities for the three constraints are estimated 

from the corresponding GP models, denoted by R1
ERI, R2

 ERI, and R3
 ERI, respectively. Figure 

5.5 plots the six training points, the accurate limit state function, and the GP predictions 

with 95% confidence intervals.  

Table 5.2: Design history for case study I (First scenario) 

Iteration Design Point R1
ERI R2

ERI R3
ERI Cost 

1 [5.0000, 5.0000] 0.9970 1.0000 0.9999 10.0000 

2 [5.6381, 4.1544] 0.9999 0.9997 0.9999 8.5163 

3 [6.4504, 3.3397] 0.9995 0.9481 0.9922 6.8892 

4 [6.3399, 3.4610] 0.9998 0.9716 0.9956 7.1211 

5 [6.0443, 3.7471] 1.0000 0.9955 0.9991 7.7028 

6 [6.4766, 3.6329] 1.0000 0.9901 0.9849 7.1563 

7 [6.3200, 3.6526] 1.0000 0.9913 0.9943 7.3326 

8 [6.4630, 3.5853] 0.9999 0.9865 0.9873 7.1224 

9 [6.4722, 3.5835] 0.9999 0.9864 0.9867 7.1112 

10 [6.4961, 3.5694] 0.9999 0.9851 0.9850 7.0733 

11 [6.4965, 3.5678] 0.9999 0.9850 0.9850 7.0713 
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12 [6.4965, 3.5679] 0.9999 0.9850 0.9850 7.0714 

 

 

 

Figure 5.5: Accurate and estimated limit state functions for scenario 1 

For the purpose of comparison, existing methods have been employed to solve the same 

design problem while the first-order score function method is used for sensitivity analysis, 

including 1) traditional RBDO using GP model without the consideration of surrogate 

model uncertainty, 2) safety margin method using 50 test sample to determine the 

magnitude of the safety margin, denoted SM(TS), 3) safety margin method using cross 

validation to determine the magnitude of the safety margin, denoted as SM(CV) [82], and 

4) direct MCS method with 106 sample points. The conservativeness level is set to 90% for 
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both SM(TS) and SM(CV). The optimal results obtained from different methods are shown 

in Fig. 5.6 and Table 5.3, where the reliabilities at the optimal designs obtained through 

different methods are verified by direct MCS using 106 samples. The safety margin using 

the cross validation method failed to provide an optimal solution because the estimated 

safety margin is too large when the initial data is limited. On the contrary, the safety margin 

method using test samples can provide an optimal design that satisfies the target reliability, 

however, it requires extra 150 function evaluations to determine the magnitude of safety 

margin. Without the consideration of surrogate model uncertainty, the traditional RBDO 

offers an optimal design located in the failure region, where the reliabilities of three 

constraints are given as 0.2828, 0.2026, and 0.1095, respectively. The optimal design using 

the proposed approach is near to the actual optimal, while the reliabilities satisfy the target 

value 0.985.  

 

Figure 5.6: Comparison of optimal designs obtained by different methods 

Table 5.3: Comparison of optimal results (scenario 1) 

 Optimum R1 R2 R3 Cost #F 
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MCS [7.0891, 2.9153] 1 0.9850 0.9850 5.8262 3*106 

Traditional [9.9701, 0.0018] 0.2828 0.2026 0.1095 0.0317 3*6 

SM(TS) [6.1948, 4.1961] 1 1 0.9947 8.0013 3*(6+50) 

SM(CV) / / / / / 3*6 

Proposed [6.4965, 3.5679] 1 0.9997 0.9975 7.0714 3*6 

6.1.2 Second scenario: Sufficient data. In this scenario, 15 initial sample points are 

used to construct the surrogate GP model. Following the same procedure as introduced in 

previous section, an optimal design dopt = [7.0701, 2.9678] is obtained after 10 iterations, 

and the iterative design history of design points, estimated reliabilities for three constraints, 

cost function values are detailed in Table 5.4. As shown in Fig. 5.7, the estimated limit 

state functions from the GP models are close to the accurate counterparts. As indicated by 

the width of the 95% confidence interval, the surrogate model uncertainties can be 

significantly reduced by constructing GP models using more training samples.  
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Figure 5.7: Accurate and estimated limit state functions for three constraints, G1, G2, and 

G3, respectively (scenario 2) 

Table 5.4: Design history for case study I (Second layout) 

Iteration Design Point R1
ERI R2

ERI R3
ERI Cost 

1 [5.0000, 5.0000] 1.0000 1.0000 1.0000 10.0000 

2 [5.7901, 4.1184] 1.0000 1.0000 1.0000 8.3283 

3 [6.8115, 3.0967] 1.0000 0.9883 0.9963 6.2852 

4 [7.0449, 3.0330] 1.0000 0.9894 0.9841 5.9882 

5 [6.9501, 3.0627] 1.0000 0.9891 0.9907 6.1126 

6 [7.0472, 2.9902] 1.0000 0.9864 0.9862 5.9429 

7 [7.0530, 2.9817] 1.0000 0.9858 0.9861 5.9287 
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8 [7.0525, 2.9824] 1.0000 0.9859 0.9861 5.9300 

9 [7.0701, 2.9677] 1.0000 0.9852 0.9852 5.8976 

10 [7.0701, 2.9678] 1.0000 0.9852 0.9852 5.8977 

Similarly, four optimal designs are obtained by using traditional RBDO, SM(TS), 

SM(CV), and direct MCS methods, where the results are detailed in Fig. 5.8 and Table 5.5. 

It is observed that all the optimal solutions converge to the same. In the second scenario, 

with three high-fidelity GP models, the traditional RBDO is capable of offering a reliable 

optimal design. Both the SM(TS) and SM(CV) method can provide a reliable optimal 

design, while SM(TS) requires 195 functions evaluations. With the consideration of the 

surrogate model uncertainty, the proposed approach offers an optimal design near to the 

MCS optimal. The results demonstrate that the proposed approach can provide reliable yet 

accurate optimal design for RBDO with sufficient training data.  

 

Figure 5.8: Optimum designs of proposed method and other existing approaches 

(scenario 2) 

Table 5.5: Comparison of optimal results (scenario 2) 

 Optimum R1 R2 R3 Cost #F 
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MCS [7.0891, 2.9153] 1 0.9850 0.9850 5.8262 3*106 

Tradition [7.0307, 2.9102] 1 0.9826 0.9921 5.8795 3*15 

SM(TS) [7.0255, 2.9754] 1 0.9895 0.9871 5.9499 3*(15+50) 

SM(CV) [6.9092, 3.0864] 1 0.9932 0.9902 6.1772 3*15 

Proposed [7.0701, 2.9678] 1 0.9894 0.9871 5.8977 3*15 

 

5.5.2 Case Study II: Vehicle Side Crash Problem 

According to the European Enhanced Vehicle-Safety Committee (EEVC) criterion, ten 

vehicle performances must satisfy the safety regulations, including the constraint of 

abdomen load (G1), rib deflection (upper G2, middle G3, and lower G4), viscous criterion 

(upper G5, middle G6, and lower G7), public symphysis force (G8), velocity of B-pillar at 

middle point (G9), and velocity of front door at B-pillar (G10), which are expressed as 

 2 4 2 1 3 9 6 11.16 0.3717 0.00931 0.484 0.01343AbdomF d d d x d d d x= − − − +  (5.28) 

 _ 3 1 2 5 1 6 9

7 8 9 1

28.98 3.818 4.2 0.0207 6.63
                          7.7 0.32

rib uDeflection d d d d x d d
d d d x

= + − + +

− +
 (5.29) 

 _ 3 1 1 2 2 8

5 1 7 8 8 9

33.86 2.95 0.1792 5.057 11
                           0.0215 9.98 22

rib mDeflection d x d d d d
d x d d d d

= + + − −

− − +
 (5.30) 

 _ 2 1 8 3 146.36 9.9 12.9 0.1107rib lDeflection d d d d x= − − +  (5.31) 
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5 1 6 9 8 2 1              +0.000875
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 2
2 3 8 3 1 7 9 20.74 0.61 0.163 0.001232 0.166 0.227lowerVC d d d d x d d d= − − + − +

 (5.34) 
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                   0.009325 0.000191
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 3 7 5 6 9 1
2

9 1 2

16.45 0.489 0.843 0.0432
                     0.0556 0.000786

doorVelocity d d d d d x
d x x

= − − +

− −
 (5.37) 

As shown in Eq. (5.28) ~ (5.37), a total number of nine design variables d and two non-

design random variables x are considered in this case study. All of the random variables 

are assumed to follow normal distributions, as detailed in Table 5.6.  

Table 5.6: Properties of random variables for vehicle side impact 

Design variables Standard deviation dL d0 dU 

d1(B-pillar inner) 0.03 0.5 1 1.5 

d2(B-pillar reinforce) 0.03 0.5 1 1.5 

d3(Floor side inner) 0.03 0.5 1 1.5 

d4(Cross member) 0.03 0.5 1 1.5 

d5(Door beam) 0.03 0.5 1 1.5 

d6(Door belt line) 0.03 0.5 1 1.5 

d7(Roof rail) 0.03 0.5 1 1.5 

d8(Mat. floor side inner) 0.006 0.192 0.3 0.345 

d9(Mat. floor side) 0.006 0.192 0.3 0.345 

x1(Barrier height) 10 / 0 / 

x2(Barrier hitting) 10 / 0 / 
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The design objective is to reduce the weight while maintaining the reliability of the 

vehicle during a side impact, the function of total weight is expressed as 

 1 2 3 4 5 7Cost( ) 1.98 4.90 6.67 6.98 4.01 1.78 2.73d d d d d d= + + + + + +d  (5.38) 

Thus, the RBDO problem for case side crash is formulated as 
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 (5.39) 

By setting the target reliability index as βt = 1.7507 (Rt = 0.9600) for all the ten 

constraints, the design problem is solved by RBDO using ERI approach. The first step is 

to construct ten GP models for the limit state functions based on 300 random samples 

generated by Latin hypercube sampling. Starting with an initial design d0 = [1, 1, 1, 1, 1, 1, 

1, 0.3, 0.3], an optimal design dopt = [0.7414, 1.3368, 0.7654, 1.2920, 0.8565, 1.3110, 

0.6870, 0.2838, 0.2902] is obtained after 32 iterations. Figure 5.9 shows the iterative design 

history for the nine design variables. In each design iteration, the ERI approach is employed 

to conduct the reliability analysis under both input variation surrogate model uncertainty, 

and the estimated reliability history of ten probabilistic constraints is provided in Fig. 5.10.  
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Figure 5.9: Iterative design history for nine design variables 

 

Figure 5.10: Reliability history for vehicle side impact 

For comparison purpose, the traditional RBDO, SM(TS) using 50 test samples, SM(CV) 

and direct MCS method are employed to solve the same RBDO problem. The optimal 

solutions and the corresponding minimized weights are listed in Table 5.7. We employed 

direct MCS using 106
 samples to verify the reliabilities of these optimal solutions as shown 

in Table 5.8. It is observed that the traditional RBDO method failed to provide a reliable 

optimal design due to the lack of data, as the reliability of the forth constraint 0.6008 and 
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tenth constraint 0.6611 cannot satisfy the target reliability requirement. With 500 more 

function evaluations than other approaches, the SM(TS) method offers an unreliable 

optimal design because the reliability of G10 is less than 0.96. As shown in Tables 5.7 and 

5.8, both the SM(CV) and proposed method can provide reliable optimal designs with 300 

function evaluations while the proposed ERI approach obtains a less weight of the design.  

Table 5.7: Comparison of optimal designs from different methods 

 d1 d2 d3 d4 d5 d6 d7 d8 d9 Weight 

MCS 0.502 1.347 0.501 1.374 0.626 1.497 0.502 0.339 0.193 24.8644 

RBDO 0.681 1.229 0.666 1.365 0.503 1.437 0.519 0.273 0.277 25.9502 

SM(TS) 0.803 1.363 0.858 1.353 0.607 1.359 0.504 0.258 0.277 28.8782 

SM(CV) 0.883 1.420 0.891 1.339 0.859 1.364 0.580 0.246 0.266 30.4720 

Proposed 0.742 1.337 0.767 1.290 0.855 1.313 0.686 0.284 0.290 28.4548 

 

Table 5.8: True reliabilities for the optimal designs 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

RBDO 1 0.9922 0.9888 0.6008 1 1 1 0.9746 0.9759 0.6611 

SM(TS) 1 0.9976 0.9980 0.9633 1 1 1 0.9952 0.9947 0.8909 

SM(CV) 1 0.9999 1 0.9920 1 1 1 0.9970 0.9978 1 

Proposed 1 0.9976 0.9990 0.9621 1 1 1 0.9748 0.9962 0.9994 

 

5.5.3 Case Study III: Aircraft Tubing Design 
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Tubing assemblies have been widely integrated in many subsystems, such as hydraulic 

system in aircraft systems. Ensuring the reliability of tubing assemblies is important to the 

safety and reliability of aircrafts. This case study employs the RBDO using ERI approach 

for the design of a twisted tube. A twisted tube is made of steel with Young’s modulus 200 

GPa and Poisson’s ratio 0.27. As shown in Fig. 5.11, the geometry of the twisted tube is 

fully characterized by four design variables listed in Table 5.9, including the inner diameter 

D, thickness T, radius of bending R for two bended tube, and the length L.  

 

Figure 5.11: Geometry of twisted aircraft tubing  

Table 5.9: Aircraft tubing design variables 

Design variable Distribution Standard deviation  Boundary 

Inner diameter, D Normal 0.2 mm [17mm, 20mm] 

Thickness, T Normal 0.05 mm [2.5mm, 3.5mm] 

Radius of bending, R Normal 0.2 mm [17mm, 20mm] 

Length, L Normal 0.4 mm [35mm, 40mm] 

A finite element model of the twisted model has been developed in ANSYS to obtain 

the maximum total deformation δmax of the tube. A failure is defined as the maximum total 

deformation is greater than the critical threshold 0.01 mm, and the design objective is to 

minimize total volume of the twisted tube. By setting a target reliability as 0.985 and the 
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target reliability index βt as 2.1701, the RBDO problem for the aircraft tubing is formulated 

as 

 ( )( )1

Minimize :     V( )

subject to:      Pr ( ) 0   

                        [ , , , ]
e tG

D T R L

β β−= Φ ≥ ≥

=

d

d

d
 (5.40) 

The ERI-based RBDO starts with an initial design d0 = [18.5000, 3.0000, 18.5000, 

37.5000], and then constructs a surrogate model using 40 training data points for reliability 

assessment and sensitivity analysis using the proposed ERI approach. An optimal design 

dopt = [17.0000, 2.9983, 18.2228, 35.0000] is achieved after 15 iterations as shown in Fig. 

5.12 and Fig. 5.13. The total volume is reduced from 258383.236 mm3 to 23970.199 mm3
. 

In this case study, the maximum total deformation is evaluated by finite element analysis 

using ANSYS. Thus, it is intractable to verify the optimal design by direct MCS method 

due to the extremely expensive computational cost. Therefore, a high-fidelity GP model 

constructed with 400 samples is used to provide accurate prediction of the maximum total 

deformation approximations. Then the MCS with 106 samples is utilized by using the high-

fidelity GP model to verify the reliability at the obtained optimal solution as shown in Table 

5.10. For comparison purpose, the aircraft tubing design problem is also solve by 

employing direct MCS method based on the high-fidelity GP model. As shown in Table 

5.10, with only 40 evaluations of finite element analysis, the optimal design obtained by 

the proposed work is near to the optimal solution achieved by direct MCS with high-fidelity 

GP model. Figure 5.14 shows deformation contour for the optimal design. Moreover, the 

static structure analysis is conducted in ANSYS for both the initial and the optimal design, 

while the maximum total deformations are 0.011295mm and 0.009222 mm, respectively.  
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Figure 5.12: Design variables at each design iteration 

 

Figure 5.13: Design history of reliability and total volume 

Table 5.10: Comparison of the optimal designs  

 Optimum Reliability Volume 

High-fidelity GP [17.0000, 2.9280, 18.7827, 35.0000] 0.9850 23648.300 

Proposed [17.0000, 2.9983, 18.2228, 35.0000] 0.9913 23970.199 
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Figure 5.14: Maximum total deformation given by ANSYS 

5.6 Conclusion 

This work presents an equivalent reliability index (ERI) approach to ensure reliable 

optimal designs for reliability-based design optimization problems with limited data. The 

Gaussian process modeling technique is used for constructing surrogate models of limit 

state functions. By employing the Monte Carlo simulation for reliability analysis, the 

predictions from GP model are treated as component normal distributions to form a 

Gaussian mixture model (GMM), which is capable of handling both input variation and the 

surrogate model uncertainty due to the lack of data. Then the reliability is approximated 

based on the first two statistical moments of the GMM and an equivalent reliability index 

can be computed through the cumulative distribution function. To facilitate the RBDO 

process, the smooth sensitivity of ERI is analytically derived based on the constructed 

GMM and the predictions from GP model. Comparison results from three case studies 

demonstrated the proposed approach outperforms existing RBDO approaches when the 

training data is limited.  
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6 ACTIVE RESOURCE ALLOCATION FOR RELIABILITY 
ANALYSIS WITH MODEL BIAS CORRECTION[96] 

6.1 Introduction 

Though various methods have been developed for validating simulation models with 

experimental data, it still lacks a strategy to actively seek critical information from both 

sources for effective reliability assessment. This work presents an active resource 

allocation approach (ARA) for reliability analysis by iteratively identifying important 

simulations and experiments for evaluations. With both the simulation data and 

experimental observations, predictive models are constructed in ARA using the Gaussian 

process modeling technique (GP) to capture the model bias. To improve the fidelity of 

predictive models, a two-phase strategy is proposed to actively search for most valuable 

points within the input space for managing the uncertainty due to lack of data and model 

bias. As a result, an enhanced Gaussian process model is obtained to predict the actual 

response of system and accurately approximate the reliability using Monte Carlo 

simulation while reducing the overall costs. The effectiveness of the proposed approach is 

demonstrated through four case studies. 

6.2 Active Resources Allocation  

6.2.1 Problem Statement 

In reliability analysis, simulation models and surrogate modeling techniques have been 

widely used for reducing the costs of evaluating the limit state function. As a substitution 

of actual physical process, simulation models constructed through idealization and 

simplification can capture some fundamental features of the underlying physics. However, 
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most reliability analysis methods assume the simulations are perfectly accurate and 

construct surrogate models purely based on simulation data. Generally, random sampling 

approaches are first used to collect the simulation training data, and then adaptive sampling 

approaches are utilized for building surrogate models with iterative updating process. 

Despite the sampling strategy, surrogate models constructed by using only simulation data 

are not capable of addressing the intrinsic differences between simulations and experiments, 

leading to inevitable errors in reliability assessment of the actual physical system. 

 

Figure 6.1: Illustration of active resource allocation for enhancing surrogate model 

fidelity and reducing cost 

Consequently, research efforts have been made to validate the simulation model by 

integrating both simulation and experimental data. Among the various sources of 

uncertainties that existed in simulation models [97], a simulation model validation problem 

has gained lots of attention, formulated as   
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 ( ) ( ) ( )e my y δ ε= + +x x x  (6.1) 

where ye(x) denotes experimental response, ym(x) represents the simulation model response 

as a function of inputs x, δ(x) represents the discrepancy function that characterizes the 

differences between simulation outputs and experimental results, and ε stands for the 

experimental errors, which is often assumed to follow a normal distribution ~ N(0, λ). In 

this work, the experimental error is assumed to be neglectable. Eq. (6.1) is often referred 

to as a problem of model bias correction and the goal is to estimate the model bias δ(x) for 

adjusting the simulation results to be closer to the experiment responses. With given sets 

of simulation and experimental data, conventional simulation model validation approaches 

correct the model bias by using Eq. (6.1), and then construct surrogate models to predict 

the experimental responses. Though the prediction is more accurate than using a surrogate 

model constructed purely based on simulation data, the prediction accuracy is not 

guaranteed as it highly depends on the strategy of choosing the input sites for conducting 

simulations and experiments.  

The fidelity of surrogate models can be improved by adding more training samples, 

however, collecting experimental data is extremely expensive due to the labor and time 

cost. In addition, though running simulations is not as expensive as conducting experiments, 

the computational costs also post a grand challenge while running a large number of 

simulations in reliability analysis. Despite the total numbers of the overall data including 

simulations and experiments, the locations of these sample points also affect the fidelity of 

the surrogate model constructed after model bias correction. For example, more prediction 

errors may be introduced within the area that sample points are sparsely distributed. 
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Conventional methods lack the capability of identifying new simulation and experimental 

samples for improving the fidelity of the surrogate models and a major challenge remains 

that it still lacks an effective means for maintaining the accuracy of reliability analysis 

while reducing the total costs including both computational and experimental cost. In this 

work, we use the term “resource” to define the layout of simulations and experiments that 

used for model bias correction and construction of an enhanced surrogate model. The 

challenge can be potentially solved by a resource allocation framework, which is 

formulated as 

 
( )

( )
,

min    ,

. .     | , , ,
m e

r m e

est m e m e t

cost f N N

s t F R N N F

=

>
X X

X X
 (6.2) 

where Nm and Ne represent the number of simulations and experiments, Xm and Xe represent 

the input sites for simulations and experiments, respectively, and Rest represents the 

estimated system reliability given the simulation results and experimental observations. As 

shown in Eq. (6.2), the goal is to ensure that the fidelity of the reliability analysis F(.) is 

greater than a high level target Ft while minimizing the computational and experimental 

costs.  

It is technically impossible to analytically solve the resources allocation problem 

involving both simulations and experiments. Therefore, we proposed an active resources 

allocation approach that aims at approaching the best solution of balancing the tradeoff 

between costs and accuracy of reliability analysis. As shown in Fig. 6.1, the goal is to 

construct an enhanced surrogate model by smartly distributing the simulations and 

experiments, and the constructed model is ensured to possess a high prediction accuracy. 
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As the flowchart shown in Fig. 6.2, the ARA updates the simulation and experimental data 

in a two-phase manner.  

 

Figure 6.2: Idea of the proposed ARA approach 

6.2.2 Model Bias Correction Using Gaussian Process Modeling  

In this subsection, we briefly review the Gaussian process modeling technique and its 

application for model bias correction using simulation and experimental data. Generally, a 

performance function G(x) can be characterized by a Gaussian process model as  

 ( )2( ) ~ ( ) , ( , ')G GP Rσx h x β x x  (6.3) 

where the response of G(x) at point x is assumed to be a stationary Gaussian process with 

mean function h(x)β and covariance function V(x, x’) = σ2R(x, x’). The term h(x) is the 

vector of predefined polynomial functions and β is the vector of corresponding coefficients. 
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Typically, a constant mean function is sufficient for engineering applications, in which 

case a constant value 1 is used to replace the polynomial term h(x). In the GP model, the 

covariance function V(x, x’) is expressed as 

 
22 2 '

1
( , ') ( , ') exp

k

p p p
p

V Rσ σ ω
=

 
= = − − 

 
∑x x x x x x  (6.4) 

where ω = [ω1, ω2, …, ωk] is the vector of roughness parameters that capture the 

nonlinearity of the process. Given a data set D = [X, Y], where X represents n training 

input sites and Y denotes the evaluated performance function value at these inputs, the 

responses Y is treated as a multivariate normal distribution by using the Gaussian process 

modeling technique, denoted as    

 ~ ( , )NY Hβ V  (6.5) 

where H = [hT(x1), …, hT(xn)] and Hβ represents the mean vector, V represents the n*n 

covariance matrix whose ith row, jth column element is σ2R(xi, xj). Based on the data set D, 

the hyperparameters σ2, β, and ω that characterize the GP model can be estimated by using 

the Maximum Likelihood Estimation method. After obtaining the hyperparameters, the 

Gaussian process model of the performance function G(x) can be constructed for predicting 

the responses at any input site, and the prediction follows a normal distribution with mean 

μ(x) and variance v(x), written as  

 1( ) ( ) ( )Tµ −= + −x h x β r V Y Hβ  (6.6) 

and  

 ( ){ }12 1 1 1 1( ) 1 ( ) ( )
TT T T Tv σ

−− − − −   = − + − −   x r V r h x H V r H V H h x H V r  (6.7) 
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where r represents the correlation vector between the input point x and all training sample 

points in X. In conventional reliability analysis methods, GP models are constructed purely 

based on simulation training data set. To account for the model bias, the Gaussian process 

modeling technique is extended for model bias correction [98] as the flowchart shown in 

Fig. 6.3, where the simulation model ym(x) is first assumed to be replaced by a GP model, 

expressed as   
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Similarly, the bias function δ(x) can be modeled by a GP model as 
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For simplicity, we use ĝm and ĝδ to represent the GP models of simulation model and bias 

function, respectively. Accordingly, hm(x) and hδ(x) stand for the polynomial regression 

functions, βm and βδ represents the corresponding coefficients, and Vm(.,.) = σm
2Rm(.,.) and 

Vδ(.,.) = σδ
2Rδ(.,.) represents the covariance functions of the two GP models. It should be 

mentioned that the polynomial regression functions for both GP models are assumed to be 

a constant 1 in this study. Assuming two data sets have been respectively collected from 

simulation models and experimental observations, where the Nm simulation data is denoted 

as  
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and Ne experimental observations are written as 
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As the experiment responses are the combination of simulation results and bias function, 

the overall collected responses Yall = [Ym, Ye] follow a multivariate normal distribution by 

assuming the independency between ym(x), δ(x), and experimental error ε, expressed as  
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Since the constant regression functions is used, Hm(Xm) is a Nm × 1 unit vector and Hδ(Xδ) 

is also a unit vector with Ne components. The covariance matrix is given as  
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where I represents an identity matrix and λ represents the standard deviation of the 

experimental error. Both Vm(.,.) and Vδ(.,.) have the same formulation as shown in Eq. (4), 

however, the hyperparameters are different as they represent the covariance function of 

simulation GP model and bias GP model, respectively. As indicated by Eqs. (6.12) and 

(6.13), a GP model for the experimental responsecan be constructed if all the unknown 

hyperparameters φ = [σm, βm, ωm, σδ, βδ, ωδ] can be determined. Based on the overall data 

set D = [Dm, De], the likelihood function of the hyperparameters is formulated as  
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where He and βe are expressed as 
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The hyperparameters can be estimated by maximizing the log-likelihood function, which 

is expressed as  

 ( ) ( )1 11log ( ) log log
2

Tall all T T all T all T
e all e e e all e eL φ − − = − + + − −  

Y V H V H Y H β V Y H β

 (6.16) 

Various optimization methods can be utilized to solve the optimization problem, and all 

the hyperparameters can be determined accordingly. As a result, a GP model ĝe can be 

obtained for predicting the experimental responseye(.) , expressed as  

 ( )( ) ~ ( ) , ( , ')e all
e ey GP Vx h x β x x  (6.17) 

Accordingly, the GP models ĝm and ĝδ can be obtained after estimating the hyperparameters. 

Therefore, the simulation response, bias prediction, and experimental response at any given 

input can be predicted by using the three GP models.   
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Figure 6.3: Flowchart of the model bias correction using Gaussian process modeling 

6.2.3 Two-Phase Strategy for Active Resource Allocation  

To effectively allocate recourses for both simulations and experiments, a two-phase 

strategy is introduced in this subsection. The resource allocation for simulation data is first 

addressed in phase I and the experiment is then iteratively conducted by fixing the updated 

simulation data in the second phase.  

Phase I: Resource allocation for simulation. With an initial simulation data set Dmi = 

[Xmi, Ymi], where Xmi represents Nmi random input sample points and Ymi represents the 

corresponding simulation responses, a GP model can be constructed, denoted as Ĝm(x) ~ 

N(μm(x),σm(x)), where μm(x) and σm(x) represents the prediction mean and standard 

deviation, respectively. It should be mentioned that this GP model is different from the GP 

model ĝm as the hyperparameters are estimated purely based on simulation data. The 
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simulation response at any input can be predicted by the GP model Ĝm and the prediction 

accuracy has to be quantified to check if current simulation data is sufficient or still needs 

to be updated for characterizing the simulation model. Therefore, a maximum confidence-

based adaptive sampling method [99] is utilized in the proposed approach for updating the 

simulation data.  

According to the randomness of the given input, the Monte Carlo simulation method is 

employed for generating N random realizations of the input variable, denoted as Xmcs = 

[xmcs,1, xmcs,2, …, xmcs,N]. For each MCS sample, an indicator function is used for 

classification, expressed as    

 ,
,

1,   ( ) 0
( )

0,   
m mcs i

f mcs iI
otherwise
µ <

= 


x
x  (6.18) 

Note the prediction mean may not be the same as the actual simulation response ym.x), and 

the sign of prediction mean μm(.) and ym(.) can be different due to the prediction error. 

Therefore, the confidence level of GP model Ĝm (.) at the point xmcs,i is defined as the 

probability of correct classification, meaning that the prediction mean has the same sign 

with the actual simulation response. The confidence level can be calculated as  
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where Φ(.) is the standard normal cumulative distribution function. As a result, a 

cumulative confidence level (CCLm) of Ĝm can be obtained after evaluating the CLm for all 

the MCS samples, expressed as  
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1 ( )
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m m mcs i
i

CCL CL
N =

= ∑ x  (6.20) 
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According to the definition of CLm, it can be found that the CCLm represents the accuracy 

of the GP model Ĝm in classifying the MCS samples. More MCS samples can be correctly 

classified if a higher CCLm is achieved, which indicates the higher-fidelity of the GP model. 

Otherwise, additional simulation samples are required for improving the fidelity of the GP 

model. An importance measurement (IM) of the MCS samples IMm is used to identify new 

training sample, written as  

 , , , ,( ) (1 ( )) ( ) ( )m
mcs i m mcs i x mcs i m mcs iIM CL f σ= − ∗ ∗x x x x  (6.21) 

where fx(.) is the joint probability density function of input variables. The MCS sample 

with the highest value of IMm will be selected as the most important point, which will be 

evaluated by the actual simulation model and added into the training data set for updating 

the GP model. By setting a high target cumulative confidence level as the stopping criterion, 

the updating process is repeated until the current CCLm is greater than the target. In phase 

I of the ARA approach, the Gaussian process modeling technique is employed for 

constructing a surrogate model of the simulation, and the accuracy of the surrogate model 

is treated as a measurement of the sufficiency of simulation data. Eventually, an accurate 

GP model can be achieved, which demonstrates that the collected simulation data is 

capable of representing the actual simulation model. For consistency and simplicity, we 

assume that a total number of Nm simulation data have been evaluated during the updating 

process at phase I.  

Phase II: Recourse allocation for experiment. After determining the simulation data 

set, the experimental observations need to be collected for capturing the model bias. At the 

last updating iteration of phase I, the identified most important point is used as the input 
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site for obtaining the first experiment response. With the collected Nm simulation data and 

the available experimental data, model bias correction using GP modeling technique is 

performed, and an enhanced GP model ĝe can be constructed as introduced in subsection 

6.2.2. The enhanced model is utilized for predicting the experimental response, and it can 

be directly used for estimating the reliability of the actual physical system. With the N 

MCS samples, the probability of failure can be approximated as     

 ( )Pr ( ) 0 ( ) ( ) [ ( )]f fe x feP G I f d E I
Ω

= < = =∫x x x x x  (6.22) 

where x is the vector of random variables, fx(x) is the corresponding joint probability 

density function, E[.] is the expectation operator and Ife(x) is a failure indicator function. 

Assuming the failure event occurs when the limit state function response is smaller than 

zero, the failure indicator function Ife(x) is used to identify failure samples, expressed as  
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where μe(xmcs,i) represents the prediction mean of the ith MCS sample that obtained by using 

the GP model ĝe. Based on Eqs. (6.22) and (6.23), the probability of failure can be 

approximated based on the ratio of the number of failure samples Nf to the number of total 

MCS samples, given as  

 ,
1 ( )

N
f

f f mcs i
i

N
P I

N N
≈ =∑ x  (6.24) 

There is no doubt that the estimated probability of failure lacks accuracy when only one 

experimental observation is used to construct the enhanced GP model. Therefore, a new 

updating procedure is introduced for iteratively adding experimental data.  
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Based on the same MCS samples that generated in phase I, the concept of confidence 

level is used to quantify the accuracy of the GP model ĝe, formulated as  
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where σe(.) represents the prediction standard deviation from the enhanced model. 

Accordingly, the cumulative confidence level for ĝe can be obtained by averaging the CLe 

for all the MCS samples. Since we have already updated the simulation data in Phase I, the 

accuracy of predicting the bias function is of critical importance in selecting the 

experimental data. Therefore, a new importance measurement for experiment IMe is 

proposed to find the best location of evaluating the next experiment response, written as  

 , , , ,( ) (1 ( )) ( ) ( )e
mcs i e mcs i x mcs i mcs iIM CL f δσ= − ∗ ∗x x x x  (6.26) 

Compared to Eq. (6.26), the confidence level CLe is used and the last term is replaced by 

the standard deviation of the bias prediction that calculated by the GP model ĝδ(.). As a 

result, the sample points with larger bias prediction variance are tends to be selected for 

improving the fidelity of the enhanced GP model. Similarly, the point with largest IMe will 

be iteratively selected as the input for conducting the next experiment. With the updated 

experimental data set and Nm simulation data that determined in phase I, a new enhanced 

GP model can be obtained by following the same procedure. The iterative updating process 

will be repeated until the target cumulative confidence level is achieved.  

At the first few iterations, the model bias prediction might contain significant errors 

due to the lack of experimental data, leading to extremely small prediction variance σe(.). 

As a result, the cumulative confidence level may falsely satisfy the target. To enhance the 
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stability of the updating process, the reliability assessment is performed at each updating 

iteration in phase II, and the relative error for estimated Pf
i and Pf

i-1 are treated as an 

additional stopping criterion, given as     

 
1i i

f f
ti

f

P P
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ε ε
−−

= ≤  (6.27) 

where i represents the ith iteration in phase II, and εt is a pre-defined threshold. Therefore, 

the experimental data updating process will be repeated until the estimated probability of 

failure converges. By iteratively adding the experimental data for correcting the model bias, 

the accuracy of experimental responsepredictions using the enhanced model can be 

increased and the estimated reliability tends to converge to the actual value.    

6.2.4 Numerical Procedure 
 

The procedure of employing the proposed active resource allocation approach for 

reliability analysis is summarized in Fig. 6.4. According to the randomness of the given 

input variables x, MCS samples are first generated as Xmcs = [xmcs,1, …, xmcs,N]. Then the 

active resource allocation is performed in a two-phase strategy. For the simulation model 

ym, Nmi initial samples are first generated by using Latin hypercube sampling (LHS), and a 

GP model Ĝm is constructed after obtaining the simulation results of these initial samples. 

According to the author’s experience, the number is suggested to be around 10*(nr - 1), 

where nr represents the total number of random variables. After predicting the simulation 

response at each MCS sample, the fidelity of the simulation GP model is quantified by the 

cumulative confidence level CCLm. The sample point that can maximize the improvement 

of the accuracy of the GP model is iteratively identified as the new simulation sample until 
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the target CCL is satisfied, and then all the evaluated simulation samples will be collected 

as the finalized simulation data set. To allocate the resource for experiments, the last 

important sample that identified in phase I will be used to conduct the first experiment. 

Following the procedure introduced in subsection 6.2.3, the model bias correction is 

performed based on the current data sets and an enhanced GP model ĝe can be constructed 

accordingly. With model bias correction, the experimental response at each MCS point can 

be predicted by using the GP model ĝe. By identifying the failure samples, the probability 

of failure can be directly approximated as the ratio of the number of failure samples to the 

total number of the MCS samples, and the CCLe and IMe can be calculated based on Eqs. 

(6.25) and (6.26). Both the estimated probability of failure and CCLe are used for 

determining if it is needed to add more experimental data. At each iteration during phase 

II, the sample point with maximum IMe will be selected as the input for conducting new 

experiment. Consequently, we are able to observe the convergence of the estimated 

probability of failure. The iterative updating process will automatically stop when both 

stopping criterions are satisfied, and the accurate estimation of probability of failure can 

be achieved simultaneously.  
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Figure 6.4: Flowchart of the proposed active resource allocation approach 

6.3 Case Studies 

In this section, four case studies will be introduced to demonstrate the effectiveness of 

the ARA approach for reliability analysis with model bias correction.   

6.3.1 Case Study I: A 2D Mathematical Problem 

A 2D mathematical problem is first introduced to test the performance of the proposed 

ARA approach, where the limit state functions are given as 
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where Gm and Ge represent the simulation model and experiment, respectively. The input 

variable is given as x = [5, 2], where both x1 and x2 follow a normal distribution with a 
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standard deviation 0.45. In this study, the experimental error is assumed neglectable. To 

apply the proposed ARA approach, the target CCL is set to 0.99 while the threshold εt is 

set to 3%.   

As outlined in subsection 6.2.4, 106 MCS samples are first generated according to the 

randomness of the input variable. Then the ARA approach is performed for model bias 

correction and reliability analysis. By employing the Latin hypercube sampling scheme, 

four initial samples are generated within the input range [x – 3σ, x + 3σ], and a GP model 

is constructed after evaluating the corresponding simulation responses. At phase I of ARA, 

4 samples have been identified to satisfy the target CCL, where the iterative updating 

history of the simulation data is shown in Fig. 6.5. During the phase I of ARA, the estimated 

limit state function (LSF) of Gm gradually approaches to the actual Gm, and a total number 

of eight simulations are determined which will be further used in phase II updating process.  
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Figure 6.5: Iterative updating process for simulations 

As introduced in subsection 6.2.2, the eight simulation data and one experimental data 

are used for model bias correction at the first iteration of phase II. With the available data 

sets, the hyperparameters of the GP models ĝm and ĝδ can be simultaneously estimated, and 

the enhanced GP model ĝe can be obtained accordingly. The enhanced GP model is used 

for predicting the experimental response of each MCS sample, and the failure samples are 

identified for reliability analysis. Meanwhile, the CCLe are calculated for quantifying the 

accuracy of the current GP model ĝe, and the prediction variance of the bias function that 



www.manaraa.com

129 

obtained from GP model ĝδ is involved in finding the next location for experimental 

observation. Eventually, a total number of four experimental sample points have been 

selected for updating the enhanced GP model. The estimated hyperparameters of the final 

GP models in phase I are given as σ = 0.0424, w1 = 0.1, and w2 = 0.2, while the 

hyperparameters of the simulation and bias GP model in Phase II are estimated as σm = 

2.1975, wm1 = 0.7183, wm2 = 0.4421, and σδ =1.1045, wδ1 = 0.9020, and wδ2 = 1.6373, 

respectively. Figure 6.6 shows the comparisons of the predicted and the actual limit state 

function Ge during the phase II updating process. At the last iteration, accurate experimental 

response predictions can be obtained by the enhanced GP model ĝe. The simulations and 

experiments updating history is shown in Table 6.1, including the iterative new sample 

points, reliability analysis results, and CCLm and CCLe history. To verify the accuracy of 

reliability analysis using ARA, MCS with 106 samples is directly employed for reliability 

analysis based on the actual limit state functions Gm and Ge, given as 0.9058, and 0.0833, 

respectively. By allocating the resource for both simulations and experiments, the proposed 

approach is capable of providing an accurate reliability assessment by only using eight 

simulations and four experiments, where the error of estimated probability of failure is 

calculated as 0.12%.      
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Figure 6.6: Iterative updating process for experiments 

Table 6.1: ARA history for updating simulations and experiments  

 
Ite. Input 

Sim. 

Response 

Exp. 

Response 

CCLm 

/CCLe 

Estimated 

Pf  

Initial 

Sim. 

Sample 

/ [5.9262, 2.9864] 0.1944 / / / 

/ [5.0563, 1.7541] -0.2603 / / / 

/ [3.9561, 2.5373] 0.0073 / / / 

/ [4.6215, 1.2407] -0.3561 / / / 

1 [5.5073, 1.9541] -0.2035 / 0.9115 0.8578 
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ARA 

Phase I 

2 [5.1025, 2.4749] -0.0465 / 0.8866 0.8972 

3 [4.7781, 2.6322] 0.0028 / 0.9800 0.9055 

4 [5.2602, 2.5917] -0.0032 / 0.9934 0.9052 

ARA 

phase II 

1 [5.2602, 2.5917] / 0.6784 0.7052 0.0000 

2 [4.9708, 1.6996] / 0.1504 0.9546 0.0820 

3 [5.3394, 1.3441] / -0.0127 0.9951 0.0854 

4 [4.6463, 1.4097] / 0.0047 0.9993 0.0834 
  

In addition, the same mathematical problem with uniformly distributed input variables 

has been solved to test the performance of the proposed approach, where the boundaries 

for both input variables are set to [X1,2 – 2*0.45, X1,2 + 2*0.45]. Similarly, four LHS 

samples are generated and evaluated as the initial simulation data set. By employing the 

ARA approach, four simulation samples and four experimental data have been identified 

until the estimated probability of failure converges. Figures 6.7 and 6.8 show the iterative 

updating history for ARA phase I and II, respectively. The overall ARA history is detailed 

in Table 6.2, including all the evaluated simulation and experimental samples and the 

iterative CCLm/CCLe history. The actual probability of failure that estimated by directly 

employing MCS on the Ge limit state function is given as 0.1510. The results show that an 

accurate reliability estimation with 0.3311% error can be obtained by using the proposed 

approach, which demonstrates that the ARA approach is applicable for reliability analysis 

problems with non-Gaussian distributed random variables.  
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Figure 6.7: Iterative updating process for simulations (uniform distribution) 
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Figure 6.8: Iterative updating process for experiments (uniform distribution) 

Table 6.2: ARA history for updating simulations and experiments (uniform distribution) 

 
Ite. Input 

Sim. 

Response 

Exp. 

Response 

CCLm 

/CCLe 

Estimated 

Pf  

Initial 

Sim. 

Sample 

/ [5.2920, 2.4230] -0.0595 / / / 

/ [4.5511, 1.3385] -0.3301 / / / 

/ [4.2391, 2.4508] -0.0358 / / / 

/ [5.7090, 1.8378] -0.2332 / / / 

1 [4.1094, 2.4411] -0.0303 / 0.8891 0.8670 
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ARA 

Phase I 

2 [4.2063, 2.8988] 0.1004 / 0.9361 0.8192 

3 [5.8860, 2.5580] 0.0221 / 0.9843 0.8248 

4 [5.0867, 2.5997] -0.0053 / 0.9944 0.8264 

ARA 

phase II 

1 [5.0867, 2.5997] / 0.6559 0.7602 0.0000 

2 [4.1076, 1.1014] / -0.0983 0.9065 0.0948 

3 [5.8600, 1.1117] / -0.1064 0.9873 0.1515 

4 [4.9603, 1.3953] / 2.36e-4 0.9995 0.1515 

 

6.3.2 Case Study II: A Vehicle Disc Brake System  

In this section, a vehicle disc brake system [100] consisting of a brake disc and a pair 

of brake pads is considered to test the performance of ARA approach. During the working 

process, strong vibration may occur when the brake system gets into an unstable state. To 

express the limit state function of the damping ratio, a quadratic polynomial response 

surface approximation model that constructed by 35 finite element simulations is treated 

as the simulation model in this work, given as  
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 (6.29) 

The input variables x = [h1, h2, h3, μ, p] are assumed to be normally distributed as shown 

in Table 6.3, where h1 represents friction material thickness, h2 represents the disc thickness, 
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h3 is the back plate thickness, μ is the friction coefficient, and p is the brake pressure. We 

assume the actual experimental limit state function Ge is formulated as  

 2
1

3

( ) ( ) ( );

( ) 0.25

e
mG x G x x

hx h p u
h

δ

δ

= +

= − −
 (6.30) 

The proposed ARA approach is employed to estimate the reliability of the actual vehicle 

disc brake system, where the target cumulative confidence level is set to 0.99, and the 

threshold for relative error of estimated probability of failure is set to 3%. Monte Carlo 

simulation with 106 samples are used in the two-phase updating process and reliability 

analysis. Starting with 60 initial simulation samples that generated by Latin hypercube 

sampling, 14 samples have been iteratively updated in phase I of ARA. Therefore, a total 

number of 74 simulations are determined for model bias correction and reliability analysis. 

In the second phase of ARA, 10 experiments have been identified until the stopping 

criterions are satisfied. The iteratively identified new experiments, corresponding actual 

experiment responses, and estimated Pf during the ARA phase II updating process are 

shown in Table 6.4. The actual probability of failure that evaluated based on the Ge limit 

state function is given as 0.0970. The two-phase updating history for both simulations and 

experiments are depicted in Figure 6.9, where the red dash line represents the actual 

reliability R = 0.9030 that calculated based on the actual experiment Ge. It is observed that 

the estimated reliability converges to the accurate value at the last iteration of phase II.  
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Table 6.3: Properties of input variables  

Variable Distribution Type Mean Standard Deviation 

h1 Normal 14.5 mm 0.8 mm 

h2 Normal 15 mm 0.8 mm 

h3 Normal 12 mm 0.8 mm 

μ Normal 0.35  0.01 

p Normal 0.5 MPa 0.02 MPa 

    

 Table 6.4: ARA history in phase II  

Ite. Experiment Input 
Exp. 

Response 

Estimated 

Pf  

1  [14.9809, 13.8920, 11.5052, 0.3494, 0.5132] 0.3654 0.0000 

2  [14.4833, 15.0998, 12.2422, 0.3513, 0.4957] 0.2183 0.0000 

3  [15.3672, 16.9097, 12.8724, 0.3541, 0.4640] 0.1044 0.0000 

4  [14.6035, 15.0355, 12.0434, 0.3403, 0.4964] 0.2302 0.0001 

5  [12.6778, 16.5355, 12.4197, 0.3494, 0.4651] -0.1784 0.1288 

6  [14.4128, 15.4669, 11.0770, 0.3495, 0.5018] 0.0616 0.0858 

7  [14.1931, 16.1508, 11.8956, 0.3500, 0.5077] 0.1022 0.0895 

8  [14.3713, 14.8596, 11.0610, 0.3516, 0.4742] 0.0053 0.1202 

9  [13.3826, 14.8894, 11.5931, 0.3504, 0.5040] 0.0721 0.0969 

10  [14.4270, 15.0624, 10.4762, 0.3558, 0.5022] 0.0124 0.0958 
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Figure 6.9: CCLe and Estimated reliability history during ARA in a) phase I and b) phase 

II  
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Figure 6.10: Comparison between true experiments and ARA predictions at 1) first, 2) 

5th, and 3) 10th iterations  

To demonstrate the effectiveness of the proposed approach, the first 50 MCS samples 

are evaluated by the actual experimental limit state function Ge, and then treated as 

validation data. Note the model bias correction is iteratively performed along with the 

updating process in phase II of ARA. At each iteration, there is an enhanced GP model that 

constructed based on the current simulation and experimental data sets. At the 1st, 5th, and 

10th iteration of phase II, the enhanced GP models are used to predict the experiment 

responses of the first 50 MCS samples. As shown in Fig. 6.10, by iteratively updating the 

experimental data using ARA, the estimated experiment responses are getting closer to the 

actual experimental responses that evaluated by Ge. The enhanced GP model constructed 

at the last iteration is capable of providing accurate predictions, thus, the resultant 

reliability prediction is ensured to be accurate. 

To test the stability of the proposed approach, ARA has been performed 30 times by 

using different layout of the initial simulation data set. The average of the total number of 

simulations and experiments that identified at each run is given as 78 and 15, respectively. 

For comparison purpose, conventional model bias correction approach is employed for 

reliability analysis of the same problem, while the Latin hypercube sampling method is 

used for generating the random samples of both simulations and experiments. By fixing 

the number of simulations at 78, four different scenarios have been introduced by varying 

the number of experiments as 15, 20, 25, and 30. For each scenario, the model bias 

correction and reliability analysis are repeated 30 times (the location of simulations and 
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experiments are totally different). Figure 6.11 shows the box plots of the estimated 

probability of failure from 30 repetitive runs using the proposed ARA, conventional 

method, and MCS method. As indicated by the box length, the accuracy of reliability 

analysis using conventional approach can be improved by increasing the number of 

experiments. However, the box length and length of whiskers for the proposed approach is 

much shorter than conventional methods, which can demonstrate the robustness of the 

ARA approach. Therefore, the results prove that the proposed ARA approach can reduce 

the costs while ensuring an accurate reliability assessment.     

  

Figure 6.11: Comparison of estimated Pf for 30 repetitive runs using different methods  

To investigate the performance of ARA for problems with smaller probability of failure, 

the input variables of vehicle disc brake system have been modified as shown in Table 6.5, 

where smaller standard deviations are applied for h1, h2, and h3. Both the simulation model 

(Gm) and experimental limit state function (Ge) remain the same, and the probability of 

failure evaluated based on the actual Ge are calculated as 0.0184. By employing the ARA 

approach, 60 LHS samples are generated for the initial simulation data set. During the ARA 

process, 10 simulation and 16 experimental samples have been iteratively selected and 
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evaluated in Phase I and II, respectively. Figure 6.12 shows the iterative CCLm, CCLe, and 

estimated reliability history during ARA, and Table 6.6 details the updating history in 

Phase II of ARA. Similarly, in Figure 6.13, the effectiveness of the proposed approach has 

been demonstrated by using the fist 50 MCS samples as validation data. The results show 

that the proposed ARA approach can be successfully applied for reliability analysis with 

small probability of failure. 

Table 6.5: Properties of input variables for high reliability target  

Variable Distribution Type Mean Standard Deviation 

h1 Normal 14.5 mm 0.3 mm 

h2 Normal 15 mm 0.5 mm 

h3 Normal 12 mm 0.4 mm 

μ Normal 0.35  0.01 

p Normal 0.5 MPa 0.02 MPa 

 

Figure 6.12: CCLm, CCLe, and Estimated reliability history during ARA in a) phase I and 

b) phase II  
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   Table 6.6: ARA history in phase II  

Ite. Experiment Input 
Exp. 

Response 

Estimated 

Pf  

1 [14.5438, 15.2228, 11.4309, 0.3619, 0.5126] 0.1708 0.0000 

2 [14.5268, 14.5984, 11.9205, 0.3498, 0.5024] 0.2578 0.0000 

3 [14.3940, 15.1249, 12.0357, 0.3509, 0.4839] 0.1398 0.0301 

4 [14.5549, 15.1524, 12.5316, 0.3505, 0.4996] 0.2688 0.0000 

5 [14.3886, 15.0761, 11.7609, 0.3617, 0.4729] 0.0573 0.0441 

6 [14.0435, 15.1363, 11.8999, 0.3526, 0.4894] 0.1044 0.0060 

7 [14.2318, 15.6373, 11.4171, 0.3539, 0.4727] -0.0422 0.0135 

8 [14.7424, 15.8375, 11.7295, 0.3563, 0.4686] 0.0129 0.0143 

9 [14.3445, 15.2938, 11.6727, 0.3441, 0.4610] -0.0006 0.0051 

10 [14.5140, 15.1942, 11.8991, 0.3446, 0.5061] 0.2219 0.0155 

11 [14.1827, 14.8199, 12.0749, 0.3338, 0.4887] 0.1859 0.0177 

12 [14.1248, 15.5177, 12.0744, 0.3571, 0.4643] 0.0029 0.0076 

13 [14.5539, 15.1321, 12.0189, 0.3573, 0.5066] 0.2327 0.0090 

14 [14.8613, 15.1764, 11.8231, 0.3489, 0.4865] 0.1716 0.0169 

15 [14.3654, 13.8820, 12.0541, 0.3447, 0.4933] 0.2886 0.0183 

16 [14.1035, 14.0750, 10.9629, 0.3506, 0.4641] 0.0029 0.0181 
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Figure 6.13: Comparison between true experiments and ARA predictions at 1) first, 2) 

8th, and 3) 16th iterations  

6.3.3 Case Study III: Vehicle Side Impact 

This case study considers a vehicle side impact problem, where a total number of six 

random variables are involved as introduced in Table 6.7. For ensuring the safety of 

passengers, vehicle systems must meet regulated side impact requirements, and the dummy’s 

response and the velocity of door are the quantity of interest according to the European 

Enhanced Vehicle-Safety Committee (EEVC) side impact procedure. In this study, the limit 

state function of the lower viscous criteria is determined explicitly as 
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 (6.31) 

It should be mentioned that the bias function is only proposed for demonstrating the 

effectiveness of the ARA approach, which may not be able to reflect the differences 

between simulation models and true experiments of the lower viscous criteria. Following 
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the procedure introduced in subsection 6.2.4, 106 MCS samples are first generated 

according to the input randomness, and 80 LHS samples are generated and evaluated as 

the initial simulation data set. By using the ARA approach, 18 simulations and 13 

experiments have been evaluated for resources allocation of both simulations and 

experiments. The CCLm and CCLe history are provided in Fig. 6.14, which shows that the 

accuracy of GP models Ĝm and ĝe can be increased by sequentially adding more training 

samples. Detailed iterative information in phase II is summarized in Table 6.8, which 

clearly shows the convergence of the estimated reliability. The reliability analysis result 

obtained by employing the direct MCS on the actual limit state function Ge is given as 

0.0486, which indicates that an accurate reliability assessment can be achieved by using 

the ARA approach.  

Table 6.7: Properties of input variables for car side impact 

Variable Distribution Mean Standard Deviation 

x1(Barrier height) Normal 0 10 

x2(B-pillar reinforce) Normal 0.75 0.03 

x3(Floor side inner) Normal 1.2 0.03 

x4(Roof rail) Normal 1 0.03 

x5(Mat. B-pillar inner) Normal 0.3 0.006 

x6(Mat. floor side inner) Normal 0.3 0.006 
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   Table 6.8: ARA history for updating experiments  

Ite. Experiment Input 
Exp. 

Response 

Estimated 

Pf 

1 [6.8472, 0.7273, 1.1768, 1.0010, 0.3005, 0.2944] 0.0083 0.0655 

2 [1.4086, 0.7502, 1.2159, 0.9854, 0.3006, 0.3012] 0.0228 0.0732 

3 [2.9775, 0.7638, 1.1701, 0.9970, 0.3005, 0.3028] 0.0234 0.0652 

4 [12.0846, 0.7366, 1.2051, 1.0076, 0.293, 0.3011] 0.0062 0.0658 

5 [3.9040, 0.7784, 1.2052, 0.9973, 0.2973, 0.2972] 0.0263 0.0644 

6 [9.0206, 0.7306, 1.1870, 0.9615, 0.2944, 0.2988] 0.0047 0.0603 

7 [-7.9398, 0.7333, 1.2026, 1.0079, 0.2989, 0.3012] 0.0288 0.0554 

8 [14.7941, 0.7325, 1.1869, 1.0392, 0.3031,0.3002] 0.0049 0.0513 

9 [15.2205, 0.7233, 1.2108, 0.9913, 0.3042,0.3011] 0.0004 0.0587 

10 [-1.8346, 0.7548, 1.2335, 1.0107, 0.2997, 0.2988] 0.0295 0.0553 

11 [-7.5288, 0.7558, 1.1848, 0.9881, 0.3006,0.2981] 0.0323 0.0495 

12 [8.6931, 0.7246, 1.2087, 0.9390, 0.2993, 0.3027] 0.0046 0.0495 

13 [3.9127, 0.6971, 1.1937, 0.9947, 0.3008, 0.3008] 0.0043 0.0492 

 

Figure 6.14: Updating history in a) phase I and b) phase II of ARA 

To visualize the effectiveness of the proposed approach, the first 50 MCS samples are 

treated as validation data, and Fig. 6.15 shows the comparisons of true bias and bias 
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prediction at 1st, 6th, and 13th iterations in phase II of ARA. Similarly, the comparisons of 

actual experiment responses and predictions from enhanced models constructed at 1st, 6th, 

and 13th iterations are depicted in Fig. 6.16. The results show that the bias function can be 

accurately modeled by using the ARA approach. Since the simulation response can be 

accurately predicted based on the determined simulation data, the accuracy of predicted 

experiment responses is then guaranteed by using the updated simulation and experimental 

data set. To compare the proposed approach with conventional random sampling approach, 

the ARA approach has been performed 30 times while the averaging numbers of updated 

simulation data and experimental data are given as 102 and 18, respectively. By fixing the 

number of simulations at 102, conventional methods using random sampling of simulations 

and experiments are used for model bias correction and reliability analysis. The comparison 

results are shown in Fig. 6.17, where the box plot obtained by performing 30 times direct 

MCS method is treated as a reference. As indicated by the shape of the boxes, the proposed 

approach outperforms the conventional approach as ARA can always achieve accurate 

reliability estimations with less number of experiments.  
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Figure 6.15: Comparison between true bias and ARA predictions at 1) first, 2) 6th, and 3) 

13th iterations  
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Figure 6.16: Comparison between true experiments and ARA predictions at 1) first, 2) 

6th, and 3) 13th iterations  
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Figure 6.17: Comparison of estimated Pf for 30 repetitive runs using different methods 

(case study III) 

6.3.4 Case Study IV: A Cantilever Beam Example 

To demonstrate the proposed ARA approach for reliability analysis with model bias 

correction, a cantilever beam shown in Fig. 6.18 is considered as a numerical example in 

the section. The beam is fixed on the wall while a static load F is applied at one of the 

corners. The length L, width b, thickness h, and external load F has been treated as four 

random variables, and the statistical information are detailed in Table. 6.9.  

 

Figure 6.18: Geometry of the cantilever beam 

Table 6.9: Properties of random variables for the cantilever beam 

Variable Distribution Mean Standard Deviation 

Length, L Normal 40 cm 0.2 cm 

Width, b Normal 7 cm 0.01 cm 

Height, h Normal 4 cm 0.01 cm 

Load, F Normal 1000 N 4 N 

 

The Young’s modulus of the beam is treated as a constant E = 70 GPa, and a high-

fidelity 3D model is developed in ANSYS APDL for static analysis, where the element 
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type is selected as solid185, and a total number of 1080 elements have been generated for 

evaluation. The response of this example is the maximum deformation of the beam, and 

the results obtained by the 3D model is treated as the experimental responses. Thus the 

limit state function Ge is formulated as  

 ( ) 0.1 ( )e
FEAG D= −x x  (6.32) 

In this study, the failure is defined as the maximum deformation is greater than a threshold 

0.1 mm. By assuming the load is applied on the midpoint of the right edge, the problem 

can be simplified, and the maximum deformation can be calculated by using Euler–

Bernoulli beam theory, expressed as 

 
3

3

4PLD
Ebh

=  (6.33) 

The responses computed by Eq. (6.33) is treated as the output of simulation model, and the 

simulation limit state function is expressed as  

 ( ) 0.1mG D= −x  (6.34) 

By setting the target CCL at 0.99, the ARA approach is performed to estimate the reliability 

at the given input. Starting from 20 initial simulations obtained by Latin hypercube 

sampling, 11 simulation and 5 experimental data have been collected in phase I and II, 

respectively. The iterative updating process in phases I and II are depicted in Fig. 6.19, 

while Table 6.10 details the updated information in phase II, including the experiment 

inputs, actual experiment responses, and estimated Pf.  
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Figure 6.19: Updating history in ARA phase I and phase II 

 

 

Figure 6.20: ARA predicted responses vs. true experiment responses for the validation 

points 

To demonstrate the effectiveness of the proposed approach, the actual experiment 

responses of the first 20 MCS samples are evaluated by the 3D model for validation. Figure 
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6.20 shows the comparison between predicted responses and actual responses at 1st, 3rd, 

and 5th iterations, which clearly indicates that the predicted responses converge to the true 

one by iteratively updating the experiments in phase II. Considering the high cost of 

running the finite element analysis, it is computational prohibitive to directly employ MCS 

on the 3D model for validating the results of reliability analysis using ARA approach. 

However, the accuracy of the reliability assessment can be guaranteed since the experiment 

responses can be accurately predicted after model bias correction using the ARA approach. 

The ANSYS APDL is performed at the given input to calculate the maximum deformation 

(m), and the contour plot is shown in Fig. 6.21. 

Table 6.10: ARA history for updating experiments  

Ite. Experiment Input 
Exp. Response 

(mm) 

Estimated 

Pf 

1 [4.2881, 0.7082, 0.3987, 995.5499] 0.0015 0.0936 

2 [3.9190, 0.6980, 0.4005, 1000.0198] 0.0232 0.1026 

3 [4.2039, 0.6941, 0.3938, 1002.0745] 0.0010 0.0937 

4 [4.1393, 0.7006, 0.3849, 998.2543] 0.0002 0.0940 

5 [4.2285, 0.7090, 0.3919, 1001.2111] 0.0001 0.0938 
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Figure 6.21: ANASYS results of maximum deformation (unit: m) 

6.4 Conclusion 

In simulation-based reliability analysis, significant errors can be introduced due to the 

existence of model bias. This work presents an active resource allocation (ARA) approach 

for reliability analysis with model bias correction, which aims at maintaining an accurate 

reliability estimation while reducing the costs incurred in running simulations and 

conducting experiments. In this study, a successive two-phase updating scheme is 

developed to identify the most important points for allocating both computational and 

experimental resources. Then the two data sets are fused to construct an enhanced surrogate 

model for predicting the response of the actual system. In the proposed ARA approach, the 

adaptive sampling scheme is closely integrated with model bias correction to enable the 

saving of both computational and experimental costs. The procedure of active resource 

allocation will be performed until the stop rule is satisfied. Finally, the resultant enhanced 

surrogate model will be integrated with Monte Carlo simulation (MCS) to calculate the 

probability of failure. The results of comparison studies have demonstrated that the ARA 
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approach is capable of providing accurate reliability assessment while maintain a high level 

of cost efficiency. 
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7 RELIABILITY-BASED MULTI-FIDELITY OPTIMIZATION 
USING ADAPTIVE HYBRID LEARNING[101] 

7.1 Introduction 

Most of the existing reliability-based design optimization (RBDO) are not capable of 

analyzing data from multi-fidelity sources to improve the confidence of optimal solution 

while maintaining computational efficiency. In this work, we propose a novel reliability-

based multi-fidelity optimization (RBMO) framework that adaptively integrates both low- 

and high-fidelity data for achieving reliable optimal designs. The Gaussian process (GP) 

modeling technique is first utilized to build a hybrid surrogate model by fusing data sources 

with different fidelity levels. To reduce the number of low- and high-fidelity data, an 

adaptive hybrid learning (AHL) algorithm is then developed to efficiently update the 

hybrid model. The updated hybrid surrogate model is used for reliability and sensitivity 

analysis in solving a RBDO problem, which provides a pseudo optimal solution in the 

RBMO framework. An optimal solution that meets the reliability targets can be achieved 

by sequentially performing the adaptive hybrid learning at the iterative pseudo optimal 

designs and solving RBDO problems. The effectiveness of the proposed framework is 

demonstrated through three case studies.  

7.2 Reliability-Based Multi-Fidelity Optimization  

As a substitution of real physical process, low-fidelity simulation model is capable of 

capturing some fundamental features of the underlying physics. Most existing reliability 

analysis and RBDO methods are performed using only simulation models, which are 

assumed to be perfectly accurate for representing the real physical process. Though 
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surrogate modeling techniques have been extensively utilized for reducing the 

computational costs in RBDO process, the achieved optimal design may not be trustworthy 

due to the ignorance of the differences between low- and high-fidelity model outputs. As a 

result, conventional RBDO methods may not be applicable for practical engineering design 

problems since they lack the capability of handling design problems with multiple fidelity 

data sources. In this work, a reliability-based multi-fidelity optimization (RBMO) 

framework is proposed to efficiently integrate both low- and high-fidelity data in 

probabilistic design optimization, which can be formulated as  
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where x = [xnon, d] represents the overall random variables, xnon and d represent the vector 

of non-design random variables and design variables, respectively; Cost(d) represents the 

objective function that needs to be minimized; Gi(x) is the ith limit state function and 

Pr[Gi(x) ≤ 0] denotes the corresponding probability of failure, where the failure event 

occurs when the limit state function response is smaller than zero; dL and dU represent the 

lower and upper boundaries of the design variables; Φ(·) is standard normal cumulative 

distribution function; βt
i and Rt

i is the target reliability index and the target reliability of the 

ith probabilistic constraint, respectively; and nc, nr, and nd are the number of probabilistic 

constraints, random variables, and design variables, respectively. In Eq. (1), the term yl and 
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yh represents low- and high-fidelity models, respectively.  

 

Figure 7.1: Sketch of the RBMO using adaptive hybrid learning. 

For a given random variables x, yh(x) denotes the observations from a high-fidelity 

model, yl(x) represents the response evaluated by using the low-fidelity model, and δ(x) 

represents the bias function that is referred to as the model discrepancy between the low- 

and high- fidelity model. In general, the high-fidelity models require more expensive costs 

but can provide more accurate results than the low-fidelity models. However, the 

computational costs of running low-fidelity models cannot be ignored when a significant 

number of low-fidelity data is required for dealing with complex structural designs. 
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Therefore, how to efficiently learn from the multi-fidelity models and ensure a reliable 

optimal design are the main targets of the proposed approach. The flowchart of the RBMO 

framework is shown in Fig. 7.1. Starting from an initial design point, Latin hypercube 

sampling (LHS) method is first utilized for obtaining the initial low-fidelity data set. To 

smartly determine the layout of the low- and high-fidelity data, the Gaussian process-based 

multi-fidelity data fusion technique is employed to build hybrid GP models by fusing the 

low- and high-fidelity data, where the adaptive hybrid learning algorithm is performed for 

sequentially identifying new samples. The resultant updated hybrid GP model is then 

utilized for reliability and sensitivity analysis in solving a RBDO problem, which provides 

a “pseudo optimal design”. The term “pseudo” is used to emphasize that this solution may 

not be the final optimal solution. The pseudo optimal design will be served as a new initial 

design for the next iteration in RBMO. Instead of updating the hybrid GP model over the 

whole design domain, the AHL algorithm only focuses on the critical region of the iterative 

pseudo optimal designs for efficiently reducing the costs of collecting both low- and high-

fidelity data. Thus, a new pseudo optimal design will be achieved at each iteration of 

RBMO. The iterative process stops until the new pseudo optimal solution is validated as 

reliable. Though multiple RBDOs are performed during the RBMO framework, the 

computational costs are neglectable as the reliability and sensitivity analysis are purely 

conducted based on the updated hybrid GP models. 

7.3 Gaussian Process-Based Multi-Fidelity Data Fusion  

Surrogate models are attractive tools in reliability analysis since the computational 

costs are much less than running low- and high-fidelity models. Compared to other 
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surrogate models, GP models can provide not only the prediction value but also an 

estimation of the uncertainty due to the lack of training data, which is useful for finding 

additional training samples. In this work, Gaussian process model is employed for 

surrogate modeling, where the limit state function G(x) is considered as a realization of a 

Gaussian process, expressed as  

 ( )2 ’( ) ~ ( ) , ( , )G GP Rσx h x β x x  (7.2) 

where h(x)β represents the mean function and R(x, x’) is the correlation function, and σ is 

a hyperparameter needs to be determined. The term h(x) is a vector of polynomial functions 

and β represents the vector of corresponding coefficients. The polynomial term h(x) is 

assumed to be a constant in this work as it is sufficient for engineering applications. The 

covariance function V(x, x’) can be expressed as  
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where k is the dimension of the input variable x; ω = [ω1, ω2, …, ωk] is the vector of 

roughness parameters that captures the nonlinearity of the process. As shown in Eqs. (7.2) 

and (7.3), the unknown hyperparameters β, ω, and σ2 fully characterize the GP model. 

Given a training data set D = [X, Y], where X denotes the vector of Nt training samples and 

Y represents the vector of training responses, the values of these hyperparameters can be 

estimated by using Maximum Likelihood Estimation (MLE) with a log likelihood function 

given as  

 2 1
2

1 1ln(2 ) ln ln ( ) ( )
2 2t tlikelihood N Nπ σ

σ
− = − + + + − −  

V Y Hβ V Y Hβ (7.4) 
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where Hβ represents the mean vector that H = [hT(x1), …, hT(xNa)], and V is the covariance 

matrix. Note H is a unit vector as the constant mean 1 is adopted for replacing the h(.) 

functions. With the training data set, the hyperparameters can be determined by 

maximizing Eq. (7.4), then the GP model can be used to predict response at any different 

point x’. The prediction follows a normal distribution with mean μ(x’) and variance v(x’) 

as, 

 1( ) ( ) (’ )’ Tµ −= + −x h x β r V Y Hβ  (7.5) 

and  

 ( ){ }12 1 1 1 1( ) 1 ( ) (’ ’ ’)
TT T T Tv σ

−− − − −   = − + − −   x r V r h x H V r H V H h x H V r  (7.6) 

where r represents the correlation vector between the input point x’ and the training 

samples. The prediction variance is also known as the mean squared error, which is treated 

as an estimation of the prediction accuracy at the point x’. 

To perform the hybrid learning using multi-fidelity data, the high-fidelity response is 

treated as the sum of low-fidelity result and bias function as shown in Eq. (7.1). 

Characterization of bias function is of critical importance in validating the low-fidelity 

model, and the goal is to construct a predictive model that can predict the high-fidelity 

response at any input site. Therefore, the GP modeling technique [102] is further utilized 

for bias correction using both low- and high-fidelity data. The low-fidelity model yl(x) and 

bias function δ(x) are first replaced by GP models, expressed as  
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and  
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where ϕl = [βl, ωl, σl
2] is the vector of the hyperparameters for the GP model ĝl, and ϕδ = 

[βδ, ωδ, σδ
2] is the vector of the hyperparameters for the bias GP model ĝδ. By assuming the 

low-fidelity model and the bias function are statistically independent, a hybrid GP model 

ĝhy for high-fidelity response yh(x) can be built through the combination of ĝl and ĝδ, written 

as  
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As shown in Eq. (7.9), the GP model ĝhy is constructed based on the hyperparameters ϕl 

and ϕδ, which can be estimated based on both low- and high-fidelity data sets. Considering 

that Nl low-fidelity data and Nh high-fidelity data have been respectively collected, denoted 

as  
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and 
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The responses data Ylh = [Yl, Yh] follows a multivariate normal distribution according to 

Eqs. (7.7), (7.8), and (7.9), given as  
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where the mean function is given as  
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where Hl(.) and Hδ(.) are unit vectors as a constant polynomial function is adopted in this 

work. The covariance matrix Vlh can be expressed as  
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where Vl(.,.) = σl
2Rl(.,.) and Vδ(.,.) = σδ

2Rδ(.,.) represents the covariance functions of the 

simulation GP model ĝl and bias function GP model ĝδ, respectively. It should be mentioned 

that the correlation function Rl(.,.) and Rδ(.,.) are not the same since the roughness 

parameters are different. A likelihood function of the hyperparamters ϕlδ = [ϕl
, ϕδ] can be 

formulated as  
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Then the MLE method can be employed for maximizing the log-likelihood function, 

expressed as  
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The genetic algorithm is employed in this work for estimating the hyperparameters. As a 

result, the three GP models ĝl, ĝδ, and ĝhy can be obtained accordingly. For any given input, 

these GP models can be used for predicting the low-fidelity response, model discrepancy, 

and high-fidelity response, respectively. 

7.4 Adaptive Hybrid Learning Scheme 

In the presented work, the adaptive hybrid learning process is performed at the iterative 

pseudo optimal designs for reducing the total costs. The first priority of the AHL is to 

reduce the number of high-fidelity data since the costs of running high-fidelity models is 

much more expensive than obtaining low-fidelity data. Therefore, the low-fidelity data will 

be first updated, and the pseudo code of the AHL algorithm is presented in Algorithm 7.1. 

Starting from the initial design point d0, a set of Nli initial samples Xli is first generated by 

using the Latin hypercube sampling, and the low-fidelity model is used for evaluating the 

responses of these initial samples, denoted as Yli. Then a surrogate GP model Ĝl can be 

constructed accordingly, where the hyperparameters are purely estimated based on the 

training data set [Xli, Yli]. Note that the GP model Ĝl may be inaccurate due to the lack of 

data. Therefore, a confidence-based adaptive sampling method [99] is employed to 

iteratively identify new low-fidelity training data for updating the GP model. Based on the 
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statistical information of the random variables and the initial design variable d0, N random 

realizations can be generated by using the Monte Carlo simulation method, which are 

denoted as Xm = [xm,1, xm,2, …, xm,N]. For each MCS sample, an indicator function is 

introduced to classify this sample into two states, expressed as  

 ,
,

1,   ( ) 0  ( )
( )

0,        ( )
l m i

f m i

failure
I

otherwise safe
µ <

= 


x
x  (7.17) 

where μl(xm,i) is the Ĝl prediction mean for the ith MCS sample. As shown in Eq. (7.17), a 

failure sample is defined as the prediction mean is less than zero. It should be mentioned 

that the response predictions from the GP model Ĝl(x) may lack accuracy when the training 

data is limited. As a result, the sign of the actual low-fidelity response at xm,i can be different 

from the prediction μl(xm,i). Thus, the confidence level CLl|d0 of the prediction at a MCS 

point is defined as the probability of making correct classification, which means that the 

sign of the actual response of the low-fidelity model is identical with the sign of the 

prediction. The mean μl(xm,i) and standard deviation σl(xm,i) of the prediction are used to 

calculate the CLl, expressed as  

 ( ) ,
, 0

,

( )
( )

l m i
l m i

l m i
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x
x d
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where Φ(.) is the standard normal cumulative distribution function. A cumulative 

confidence level CCLl|d0 quantifies the prediction accuracy of the GP model Ĝl(x) at design 

point d0 and can be obtained by averaging the confidence levels of the N MCS samples, 

expressed as  

 0 , 0
1

1 ( )
N

l l m i
i

CCL CL
N =

= ∑d x d  (7.19) 
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A higher CCLl|d0 indicates that the MCS samples are more likely to be correctly classified. 

Therefore, the critical part of updating the GP model is to add new low-fidelity data to 

increase the CCLl|d0. For each MCS sample, a potential improvement PIl of the CCLl|d0 is 

calculated as  

 , , , ,( ) (1 ( )) ( ) ( )l
l m i l m i x m i m iPI CL f σ= − ∗ ∗x x x x  (7.20) 

where fx(.) is the joint probability density function of input variables x. Since CLl represents 

the probability of correct classification, the first term in Eq. (7.20) represents the potential 

confidence level improvement. The multiplication of the first two terms represents how 

likely the potential improvement can be achieved. It is known that the prediction variance 

of the GP model near a point xm,i will be reduced if xm,i is added as a new training sample. 

Therefore, the last term is added and sample points with larger prediction variance are more 

likely to have larger PIl values. By evaluating all the MCS samples using Eq. (7.20), the 

sample point with the largest PIl
 is considered as the most useful sample that can maximally 

improving the cumulative confidence level CCLl|d0. After obtaining the low-fidelity 

response of the selected sample, the new training data is added into the training data set for 

updating Ĝl(x). The updating process will be repeated until the CCLl|d0 is greater than a 

pre-defined target CCLt. By using Eq. (7.20) as the sampling criterion, the identified most 

useful samples tends to be sparsely located within the local domain of the given point x. 

Once an accurate GP model Ĝl is achieved through adding new low-fidelity data, the 

next step is to construct a hybrid GP model by fusing both the low- and high-fidelity data. 

In the proposed approach, the last identified low-fidelity sample will be treated as the input 

for collecting the first high-fidelity data. With the available low- and high-fidelity data, the 
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GP-based multi-fidelity data fusion is performed to build a hybrid GP model ĝhy according 

to Section 7.3. As shown in Algorithm 7.1, the hybrid GP model needs to be updated by 

iteratively identifying the most useful high-fidelity samples. Similarly, the confidence level 

CLhy of the hybrid GP model prediction at a MCS point can be calculated as  

 ,
, 0

,

( )
( )

( )
hy m i

hy m i
hy m i
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σ

 
 = Φ
 
 

x
x d

x
 (7.21) 

where μhy(.) and σhy(.) represents the mean and standard deviation of the prediction from 

the hybrid GP model. Then the cumulative confidence level CCLhy|d0
 can be obtained by 

averaging the CLhy for all the MCS samples, which quantifies the prediction accuracy at 

the design point d0. For each MCS sample, the potential improvement PIhy of the CCLhy|d0 

needs to be calculated, which is expressed as   

 , , , ,( ) (1 ( )) ( ) ( )hy m i hy m i x m i m iPI CL f δσ= − ∗ ∗x x x x  (7.22) 

where xm,i represents the ith MCS sample. It should be mentioned that the accuracy of 

predicting the bias function is of critical importance in determining the best location of the 

new high-fidelity data. Therefore, the bias prediction obtained by the GP model ĝδ(.) is 

used as the last term in Eq. (7.22). The sample point with larger σδ(.) indicates that the bias 

prediction is less accurate, which tends to result in larger PIhy value. After evaluating all 

the MCS samples, the point with largest PIhy
 will be selected as the new sample for 

computing the high-fidelity response. Then a new hybrid GP model can be constructed 

with the updated high-fidelity data set and available low-fidelity data. The iterative 

updating process will be repeated until the target cumulative confidence level is achieved.  

Algorithm 7.1: Adaptive hybrid learning 
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Initialization: 
Initial design point, d0 

Target confidence level, CCLt 

Size of the Monte Carlo simulations N 
Initial low-fidelity data set, [Xli, Yli] 
(AHL first identifies most useful low-fidelity data) 
sp = 0; 
While sp = 0 do  

Construct GP model Ĝl based on current low-fidelity data set  
for i= 1 to N do 

      Evaluate CLl(xm,i) using Eq. 18 
      Evaluate PIl(xm,i) using Eq. 20 

end for 
compute CCLl|d0 using Eq. 19 
If CCLl|d0 < CCLt then 

( )arg max( );   ne
l

new nw ewlPI y= =y xx  
Update Dl 

else if 
   sp = 1 
end if 

end while 
(Then AHL identifies most useful high-fidelity data) 
sp = 0; 
While sp = 0 do  

Construct hybrid GP model ĝhy based on current low- and high-fidelity data set Dl and Dh   
for i= 1 to N do 

      Evaluate CLhy(xm,i) using Eq. 21 
      Evaluate PIhy(xm,i) using Eq. 22 

end for 
compute CCLhy|d0 by averaging CLhy(xm,i)  
If CCLhy|d0 < CCLt then 

( )arg max( );   new hy
h

new newyPI == y xx  
Update Dh 

else if 
   sp = 1 
end if 

end while 

7.5 RBMO Using Hybrid GP Model  

To ensure a reliable optimal design while reducing the number of both low- and high-

fidelity data, the AHL and RBDO are sequentially performed at each iteration of RBMO. 

As introduced in Section 7.2, a RBDO problem will be solved for obtaining the pseudo 

optimal design once the updated hybrid GP model is achieved. The typical form of the 
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RBDO can be formulated as  
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where ĝhy represents the updated hybrid GP model that characterizes the limit state 

functions G(x). In this study, the prediction mean μhy(.) is treated as the estimated response 

from ĝhy. In the RBDO, the design objective is to minimize the cost function while ensuring 

the probabilistic constraints are satisfied at the pseudo optimal design. Based on the 

updated hybrid GP model, the MCS approach is used to estimate the probability of failure, 

which can be expressed as   

 ˆPr ( ) 0 ( ) ( ) [ ( )]
f

f hy f x fP g I f d E I
Ω

 ≈ < = =  ∫X x x x x  (7.24) 

where fx(x) is the joint probability density function of the random variables, Ωf denotes the 

failure region, E[.] is the expectation operator, and If(.) is an indicator function to classify 

failure and safe samples. At the given design point, a number of N MCS samples are 

generated for random realizations as introduced in Section 7.4, and each MCS sample are 

evaluated by the indicator function If(.), given as  

 ,
,
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( )

0,        ( )
hy m i

f m i

failure
I

otherwise safe
µ <
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x
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where μhy(xm,i) is the hybrid GP model prediction mean for the ith MCS sample. After 

evaluating all the N MCS samples, the probability of failure of the given design point can 

be calculated based on the number of failure samples to the number of total MCS samples, 

expressed as  
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In RBDO, the sensitivity information of the probability of failure with respect to the design 

variables is required in searching for pseudo optimal solutions. In this work, the first-order 

score function method [103] is adopted due to its high efficiency, where the sensitivity can 

be directly approximated based on the updated hybrid GP model and the generated MCS 

samples. According to Eq. (7.26), the partial derivative of the probability of failure with 

respect to the ith design variable di is thus derived as 

 
ln ( )( ) ( ) = E ( )f x

f x f
i i i

P fI f d I
d d dΩ

∂  ∂∂
=  ∂ ∂ ∂ 

∫
XX X X X  (7.27) 

where the partial derivative of the log function of the joint PDF fx(X) with respect to the 

design variable di is known as the first-order score function. For independent random 

variables, the joint probability density function of X is expressed as multiplication of its 

marginal PDFs, written as 

 
1

( ) ( )
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nr
x x ii

f f x
=

=∏X  (7.28) 

where nr is the dimension of random variables X. Therefore, the sensitivity information of 

the probability of failure with respect to design variables can be efficiently approximated 

without incurring extra computational costs. With the capability of performing reliability 

and sensitivity analysis, the sequential quadratic programming (SQP) method is selected 

for solving the RBDO problem in Eq. (7.23).  

Since there is no adaptive learning process involved during the RBDO process, the 

prediction from the hybrid model at the pseudo optimal design may not be accurate. As 
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introduced in Section 7.2, the RBMO process will be continued once the pseudo optimal 

solution is achieved. Therefore, a stopping criterion of the RBMO is proposed as  
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hy p t

f p t

CCL CCL

P R

 ≥


≤ −

d

d
 (7.29) 

where CCLhy|dp represents the cumulative confidence level of the hybrid GP model at the 

pseudo optimal design dp, Pf|dp represents the estimated probability of failure, and CCLt is 

a user-defined target. If the obtained CCLhy|dp is higher than the target CCL, it means the 

latest hybrid GP model also possess a high prediction accuracy at the pseudo optimal 

design point, thus the achieved dp tends to be trustworthy. A reliable RBMO optimal 

solution can be obtained once the stopping criterions in Eq. (7.29) are satisfied. The overall 

procedure of performing the RBMO is summarized in Algorithm 7.2.  

Algorithm 7.2: RBMO using adaptive hybrid learning  

Initialization: 
Initial design for optimization, d0 

Target reliability level Rt 

Generate N MCS samples that follows standard normal distribution.  
Specify the boundaries for design variables d, and use LHS for obtaining the initial low-
fidelity data set [Xli, Yli]. 
ite = 0 (RBMO iteration number) 
RBMO_stop == 0 (logic variable for RBMO process) 
RBDO_stop == 0 (logic variable for RBDO process) 
while RBMO_stop == 0 do 
     if ite == 1 do  
     initial design d0  
     else if 
     d0 = dp  
     end if 

Map the initial MCS sample based on statistical information of d0  
     Perform AHL as shown in Algorithm 1 
     (Employ RBDO to provide pseudo optimum) 

while RBDO_stop == 0 do 
for i = 1 to N do 
   μhy(xm,i) from the hybrid GP prediction ,ˆ ( )hy m ig x  
   classify this sample into failure or safe using Eq. (25) 
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end for 
calculated the estimated reliability based on Eq. (26) 
compute the sensitivity according to Eq. (27) 
calculate the cost function value and derive the sensitivity. 
provide reliability estimation, sensitivities for probabilistic constraints and cost 
function to the SQP optimizer.  
if Achieve new design point d’ do 
   d0 = d’ 
else if 
   achieve optimal solution, dp=d0, RBDO_stop = 1  
end if 
Map the initial MCS sample based on statistical information of d0  

end while 
(RBDO complete) 
check the stopping criterion in Eq. (29) 
If satisfied do 
RBMO optimal dopt = dp 
else if 
RBMO_stop = 0; ite = ite + 1 
end if 
(RBMO Iteration number) 

end while 

7.6 Case Studies 

In this section, three design problems will be solved to demonstrate the effectiveness 

of the proposed RBMO framework.  

7.6.1 Case Study I: Mathematical Example 

In the first case study, a benchmark 2D mathematical design problem [104] is 

considered for testing the performance of the proposed RBMO framework. The two design 

variables d = [µX1, µX2] are both normally distributed with standard deviation std = [0.3464, 

0.3464]. The design optimization problem involves three probabilistic constraints, which 

can be formulated as  
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As shown in Eq. (7.30), the limit state functions G1 and G3 remains the same while two 

data sources are available for the second constraint, where the low-fidelity (LF) and high-

fidelity (HF) model are denoted as G2
l and G2

h respectively. The term δ(.) represents the 

bias function that quantifies the differences between low- and high- fidelity responses. The 

target reliability is set to 0.985 for all the three constraints, and the target for cumulative 

confidence level is set to 0.99.  

 

Figure 7.2: Approximated limit state functions for G1
 and G3 
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The RBMO framework is employed to solve the optimization problem by using 105 

MCS samples. Given the boundaries of the two design variables, the initial design point is 

selected as d0 = [5, 5]. Within the design domain, the Latin hypercube sampling (LHS) 

algorithm is employed to generate six initial training samples, where the limit state 

functions G1, G2
l, and G3 are evaluated for obtaining the initial training data sets. Therefore, 

three GP models can be constructed accordingly. Since the proposed approach focuses on 

the adaptive hybrid learning for multi-fidelity data, the updating process for GP models of 

G1 and G3 is skipped in this work, where the approximated limit state functions are shown 

in Fig. 7.2. Following the procedure introduced in Section 7.2, the AHL and RBDO are 

sequentially performed for achieving the RBMO optimal solution. After two iterations in 

RBMO, an optimal solution is obtained as dopt = [7.7344, 1.6650].  

In the 1st iteration of RBMO, the AHL algorithm determines that there is no need to 

update the GP model Ĝl that constructed using 6 low-fidelity data, and three high-fidelity 

sample are sequentially identified for updating the hybrid GP model. With the hybrid GP 

model constructed using 6 low- and 3 high-fidelity data, a RBDO problem is solved for 

providing the pseudo optimal design as introduced in Section. 7.4. The design history of 

the 1st RBDO is shown in Table 7.2, including the design points, estimated probability of 

failure and the value of cost function. The 1st pseudo optimal solution dp
1

 = [8.0739, 1.0594] 

failed to satisfy the stopping criterion as the CCLhy|dp is calculated as 0.9234, which is less 

than the target CCL 0.99. Thus, in the 2nd iteration of RBMO, the AHL and RBDO are 

performed with the pseudo optimal design dp
1, where two low- and two-high-fidelity data 

have been collected for updating the hybrid GP model. As shown in Fig. 7.3, the GP model 

constructed using the 8 low-fidelity samples can accurately reflect the failure surface of the 
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low-fidelity model within the critical region. In Fig. 7.4, the effectiveness of adding the 

fourth and fifth high-fidelity data can be demonstrated by comparing the approximated 

limit state function with the actual limit state function G2
h. For the lasted hybrid GP model, 

the corresponding hyperparameters are given as βl = 14.4097, ωl = [0.1619 0.1605], σl = 

9.9984, βδ = -1.4899, ωδ = [0.4184, 0.2801], σδ = 3.2624, respectively. Table 7.3 shows the 

information of all the identified low- and high-fidelity data during the overall RBMO 

process, and the design history in the 2nd RBDO is included in Table 7.4. The design history 

of the RBMO is depicted in Fig. 7.5, which clearly shows the convergences during the two 

RBDOs. 

Table 7.2: Design history in the 1st RBDO  

Ite. Input R1 R2 R3 Cost  

1 [5.0000, 5.0000] 1.0000 1.0000 1.0000 10.0000 

2 [6.0000, 4.0000] 1.0000 1.0000 0.9988 8.0000 

3 [9.9572, 0.0000] 0.2732 1.0000 0.1156 0.0428 

4 [7.8362, 0.8361] 0.9276 1.0000 0.9990 2.9999 

5 [7.9881, 0.9669] 0.9703 1.0000 0.9932 2.9788 

6 [8.1170, 1.0349] 0.9823 1.0000 0.9815 2.9179 

7 [8.0745, 1.0576] 0.9846 1.0000 0.9851 2.9831 

8 [8.0740, 1.0593] 0.9849 1.0000 0.9850 2.9853 

9 [8.0739, 1.0594] 0.9850 1.0000 0.9850 2.9855 
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Figure 7.3: Approximated limit state function (LF) at the 2nd iteration of RBMO 

 

Figure 7.4: Adaptive hybrid learning for high-fidelity data at the 2nd iteration of RBMO 

For comparison purpose, the design problem has been solved by using conventional 

RBDO methods: 1) an adaptive GP model [99] constructed using only low-fidelity data, 

denoted as GP(LF), and 2) an adaptive GP model [99] constructed using only high-fidelity 

data, denoted as GP(HF). To maintain the consistency, the approximated limit state 

functions for G1 and G3 remains the same. Moreover, direct MCS method has been applied 
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for the design problems using the high-fidelity model. To validate the optimal designs 

obtained by different methods, direct MCS with 105 samples are used to evaluate the actual 

reliability of the probabilistic constraints G2
h. The optimal results obtained by using 

different methods are shown in Table 7.5, which includes the number of function 

evaluations for G2
l and G2

h. As shown in Fig. 7.6, the optimal designs obtained by GP(HF) 

and RBMO are close to the MCS optimal design. When GP(LF) is used for design 

optimization, the optimal design completely falls into the failure region. It proves that the 

ignorance of the difference between low- and high-fidelity data may yield infeasible 

solutions. Though GP model constructed with only high-fidelity data can be used for 

providing reliable optimal solution, 10 high-fidelity samples are evaluated, which is the 

twice of the high-fidelity samples used by the proposed approach. The results demonstrate 

that the RBMO framework is capable of providing reliable optimal solutions with less total 

costs. 

 

Figure 7.5: RBMO design history 
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Figure 7.6: Optimal solutions obtained by using different methods 

Table 7.3: Low- and high-fidelity data identified by AHL  

 
Ite. Input 

Sim./Exp. 

Response 

CCLm 

/CCLe 

Updated at  

Updated 

LF data 

1 [8.3273, 1.0371] -0.1803 0.9810 2nd ite. RBMO 

2 [8.5958, 1.2381] -0.0415 0.9917 2nd ite. RBMO 

Updated 

HF data 

1 [5.8489, 5.2127] 2.8254 0.9593 1st ite. RBMO 

2 [4.6915, 4.7793] 2.0050 0.9876 1st ite. RBMO 

3 [5.4476, 3.8158] 1.5411 0.9997 1st ite. RBMO 

4 [8.0301, 0.9262] 0.0934 0.9737 2nd ite. RBMO 

5 [7.7389, 0.8960] 0.0088 0.9968 2nd ite. RBMO 

Table 7.4: Design history in the 2nd RBDO  

Ite. Input R1 R2 R3 Cost  

1 [8.0739, 1.0594] 0.9850 0.7663 0.9850 2.9855 

2 [7.8948, 1.3670] 0.9991 0.9260 0.9854 3.4722 

3 [7.7906, 1.5496] 0.9999 0.9686 0.9855 3.7590 

4 [7.7349, 1.6646] 0.9999 0.9848 0.9851 3.9297 
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5 [7.7345, 1.6649] 0.9999 0.9850 0.9850 3.9304 

6 [7.7344, 1.6650] 0.9999 0.9850 0.9850 3.9306 

Table 7.5: Optimal solutions obtained from different methods 

Methods Design points Actual Pf No. of Sim. + Exp. Cost 

GP(LF) [7.0147, 2.9898] 0 10 + 0 5.9751 

GP(HF) [7.7160, 1.6625] 0.0142 0 + 10 3.9465 

RBMO [7.7344, 1.6650] 0.0134 8 + 5 3.9306 

MCS_RBDO [7.7707, 1.6409] 0.0150 0 + 105 3.8702 

 

7.6.2 Case Study II: Vehicle Brake Disc Design 

To model a vehicle disc brake system, a 3D finite element model using 26,125 elements 

and 37,043 nodes is constructed according to Xia et al. [100]. The disc brake system 

consists of a brake disc and a pair of brake pads, and the failure occurs if the damping ratio 

of the vibration is less than a threshold -0.01. Based on the finite element model, a quadratic 

polynomial response surface approximation model is developed for expressing the limit 

state function of the damping ratio. Therefore, the design optimization problem can be 

formulated as  
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where the three design variables are the mean of the friction material thickness h1, disc 

thickness h2, and back plate thickness h3. Two non-design random variables are involved, 

including the friction coefficient u and brake pressure p. As shown in Eq. (7.31), an 

artificial bias function δ(.) is used to distinguish the low- and high-fidelity model, where 

the quadratic polynomial response surface approximation model is treated as the low-

fidelity model. The properties of the design and random variables are detailed in Table 7.6. 

Since the lightweight is an important target in vehicle design, the thickness of the back 

plate µh3 is treated as the objective function that needs to minimize. In this study, the target 

CCL and the reliability target are set to 0.99 and 0.985, respectively. 

Table 7.6: Properties of the random variables  

Variable 
Distribution 

Type 
Mean 

Standard 

Deviation 

Design 

Boundaries 

h1 Normal μh1 mm 0.9 mm [14.5, 15.5] 
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h2 Normal μh2 mm 0.9 mm [19.5, 20.5] 

h3 Normal μh3 mm 0.9 mm [12, 20] 

μ Normal 0.35  0.01 / 

p Normal 0.5 MPa 0.02 MPa / 

 

Starting from an initial design d0 = [15, 20, 15], the RBMO framework is employed to 

achieve a reliable optimal design. The Latin hypercube sampling method is utilized to 

generate 50 initial samples, and a GP model Ĝl can be constructed after evaluating the low-

fidelity responses of these initial samples. By performing the adaptive hybrid learning, 82 

low-fidelity samples and 19 high-fidelity samples are collected at the first iteration of 

RBMO, where Fig. 7.7 shows the CCLl and CCLhy history during the AHL process. The 

updated hybrid GP model is used to solve a RBDO problem as introduced in Section 7.4, 

where the history of the design points and the estimated probability of failure are shown in 

Table 7.7. At the 2nd iteration of RBMO, the AHL process is repeated and three high-

fidelity data have been identified for enhancing the prediction accuracy within the critical 

region. Figure 7.8 shows the CCLhy achieves the target after adding the third high-fidelity 

data. The design history of the 2nd RBDO is summarized in Table 7.8, where the new 

pseudo optimal solution is validated as the RBMO optimal design, given as dopt = [15.5000, 

19.5000, 17.4284]. The design history of RBMO is shown in Fig. 7.9, where 132 low- and 

22 high-fidelity data are collected during the overall RBMO process. To validate the 

optimal solution, 105 MCS samples are used for calculating the actual reliability based on 

the high-fidelity model Gh, which is given as 0.9829.  
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Figure 7.7: Adaptive hybrid learning in the 1st iteration of RBMO 

Table 7.7: Design history in the 1st RBDO  

Iterations in 

RBDO 
Design points Estimated Pf  Cost 

1 [15.0000, 20.0000, 15.0000] 0.4727 15.0000 

2 [15.5000, 19.5000, 15.9799] 0.1124 15.9799 

3 [15.5000, 19.5000, 16.8457] 0.0445 16.8457 

4 [15.5000, 19.5000, 17.4120] 0.0224 17.4120 

5 [15.5000, 19.5000, 17.6665] 0.0156 17.6665 

6 [15.5000, 19.5000, 17.6958] 0.0151 17.6958 

7 [15.5000, 19.5000, 17.7011] 0.0151 17.7011 

8 [15.5000, 19.5000, 17.7011] 0.0150 17.7011 
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Figure 7.8: Adaptive hybrid learning in the 2nd iteration of RBMO 

Table 7.8: Design history in the 2nd RBDO 

Iterations in 

RBDO 
Design points Estimated Pf  Cost 

1 [15.5000, 19.5000, 17.7011] 0.0970 17.7011 

2 [15.5000, 19.5000, 17.3589] 0.0169 17.3589 

3 [15.5000, 19.5000, 17.4333] 0.0149 17.4333 

4 [15.5000, 19.5000, 17.4271] 0.0150 17.4271 

5 [15.5000, 19.5000, 17.4284] 0.0150 17.4284 

To demonstrate the effectiveness of the proposed RBMO framework, the same design 

problem has been solved by three different methods, including 1) GP(LF), 2) GP(HF), and 

3) RBDO using hybrid GP model with randomly generated sample points, denoted as 

(hybrid GP) approach. For the latest method, the number of low-fidelity data is fixed at 

132, which is the total number of low-fidelity samples that utilized by the proposed 

approach. Moreover, three different combinations are considered where different numbers 

(30/40/50) of high-fidelity samples are used for the hybrid GP approach. The optimal 
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solutions obtained using different methods are detailed in Table 7.9, where the 

corresponding accurate reliabilities are calculated by directly using 105 MCS samples. The 

results clearly indicate that the optimal design failed to satisfy the reliability requirement 

if the problem is solved by only using low-fidelity data. GP(HF) method can ensure a 

reliable optimal solution, however, the number of high-fidelity samples is given as 168, 

indicating the cost efficiency is much lower than the RBMO framework. For the hybrid GP 

approach, the performance can be improved by increasing the number of high-fidelity data. 

However, the hybrid GP model approach using 30 random high-fidelity samples provides 

an untrustworthy solution as the reliability 0.9362 failed to satisfy the target. Compared to 

hybrid GP model constructed using randomly generated samples, the proposed AHL can 

provide reliable optimal solutions with less number of function evaluations. 

 

Figure 7.9: Design iterations during RBMO 

Table 7.9: Optimal solutions obtained from different methods 

Methods Design points Actual R No. of LF + HF 

GP(low-fidelity) [15.5000, 19.5000, 16.0610] 0.8940 132+0 
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GP(high-fidelity) [15.5000, 19.5000, 17.5176] 0.9841 0+168 

Hybrid GP [15.5000, 19.5000, 17.5938] 0.9362 132+30 

Hybrid GP [15.5000, 19.5000, 17.4596] 0.9817 132+40 

Hybrid GP [15.5000, 19.5000, 17.6792] 0.9879 132+50 

RBMO [15.5000, 19.5000, 17.4284] 0.9828 132+22 

MCS_RBDO [15.5000, 19.5000, 17.5450] 0.9850 0+105 

 

7.6.3 Case Study III: Cantilever Beam Example Design 

In case study III, a cantilever beam is considered as an example for testing the 

performance of the RBMO framework. The beam is made of aluminum with Young’s 

modulus 69 GPa. As shown in Fig. 7.10, the left end of the beam is fixed on the wall while 

a load F is applied at the corner of the right end. The design objective is to minimize the 

volume while satisfying the design requirement on the maximum total deformation, the 

RBMO problem can be formulated as  
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In this example, the mean of the length l, width b, and thickness h are considered as three 

design variables, while the Young’s modulus E and external load F are two random 

variables. The statistical information of the random variables is summarized in Table 7.10. 

In Eq. (7.32), a failure occurs if the maximum deformation is greater than a threshold 0.1 
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mm. The low-fidelity model Gl is derived based on the Euler- Bernoulli beam theory, where 

the load is assumed to be applied on the midpoint of the right edge. On the other hand, a 

high-fidelity 3D model using 1080 elements is developed in ANSYS APDL for static 

analysis, and the results are treated as high-fidelity model DFEA(.). The target reliability for 

the optimization problem is set to 0.985.  

  

 

Figure 7.10: Geometry of the cantilever beam 

Table 7.10: Properties of random variables for the cantilever beam 

Variable Distribution Mean 
Standard 

Deviation 

Design 

Boundaries 

Length, L Normal μL dm 0.4 dm [3, 5] 

Width, b Normal μb dm 0.02 dm [0.4, 0.8] 

Height, h Normal μh dm 0.02 dm [0.3, 0.6] 

Young’s Modulus, E Normal 69 GPa 1 GPa / 

Load, F Normal 1000 N 4 N / 

The RBMO framework is employed to solve the optimization problem with an initial 

design d0 = [4, 0.6, 0.45] and 50 initial samples generated by LHS. An optimal design dopt 
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= [3.0000, 0.4000, 0.4542] is obtained after two iterations in RBMO. Therefore, the AHL 

process and RBDO have been performed twice for achieved the optimal solution. The 

iterative design history during the 1st and 2nd RBDO are summarized in Table 7.11 and 

7.12, respectively, and Figures. 7.11 and 7.12 depicts the iterative design points and the 

reliability history during the RBMO. After achieving the 1st pseudo optimal design, the 

RBMO continues as the stopping criterion is not satisfied. Therefore, in the 2nd iteration of 

RBMO, the AHL algorithm is reused to update the hybrid GP model at the 1st pseudo 

optimal design, leading to two different estimated reliabilities in Fig. 12.  

 

Figure 7.11: Design iterations during the RBMO 
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Figure 7.12: Reliability history during the RBMO 

At the 1st iteration of RBMO, 42 low- and 8 high-fidelity data have been selected for 

updating the hybrid GP model, while 1 low- and 2 high-fidelity data have been identified 

at the 2nd iteration of RBMO. Therefore, a total number of 93 low- and 10 high-fidelity 

data are used for deriving the optimal solution. The ANSYS APDL is performed at the 

optimal solution to calculate the maximum deformation (m), and the contour plot is shown 

in Fig. 7.13. 

Table 7.11: Design history at the 1st iteration of RBMO 

Iterations in 

RBDO 
Design points Estimated Pf  Cost 

1 [4.0000, 0.6000, 0.4500] 0.1027 1.0800 

2 [3.5119, 0.4000, 0.4723] 0.0144 0.6634 

3 [3.0000, 0.4000, 0.4227] 0.0143 0.5072 

4 [3.0000, 0.4000, 0.4218] 0.0150 0.5062 

5 [3.0000, 0.4000, 0.4218] 0.0150 0.5061 
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Table 7.12: Design history at the 2nd iteration of RBMO 

Iterations in 

RBDO 
Design points Estimated Pf  Cost 

1 [3.0000, 0.4000, 0.4218] 0.0571 0.5061 

2 [3.0000, 0.4000, 0.4399] 0.0270 0.5279 

3 [3.0000, 0.4000, 0.4501] 0.0178 0.5402 

4 [3.0000, 0.4000, 0.4538] 0.0153 0.5446 

5 [3.0000, 0.4000, 0.4542] 0.0150 0.5451 

6 [3.0000, 0.4000, 0.4542] 0.0150 0.5450 

 

Figure 7.13: ANASYS results of maximum deformation (unit: m) 

7.7 Conclusion 

In this work, a reliability-based multi-fidelity design optimization framework was 

developed for ensuring reliable optimal design while reducing the number of low- and 

high-fidelity data. To provide more accurate response predictions, data from both sources 

are integrated for constructing a hybrid GP model. At each iteration of the RBMO, the 

adaptive hybrid learning is first performed to iteratively identify new low- and high-fidelity 

samples for updating the hybrid GP model, then a RBDO problem is solved for providing 
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a pseudo optimal solution. The RBMO process will be repeated until the new pseudo 

optimal solution is validated as a reliable optimal design. In RBMO, the layout of the low- 

and high-fidelity data is smartly designed by the AHL algorithm, which can reduce the 

total costs as well as providing the most useful information to achieve the optimal solution. 

Moreover, the multiple RBDO strategy that embedded in the RBMO framework can further 

reduce the costs as the updating scheme only needs to be performed at the critical region, 

which moves towards to the final optimal solution. The results from three case studies show 

that RBMO outperforms RBDO methods that purely based on one data source. Through 

the comparison study, it proves that RBMO is capable of providing a reliable optimal 

design while reducing the costs of collecting both high-fidelity and low-fidelity data. 

8 BAYESIAN MIXTURE MODELING FOR RELIABILITY-
BASED DESIGN OPTIMIZATION UNDER 
HETEROGENEOUS UNCERTAINTIES[105] 

8.1 Introduction 

Heterogeneous uncertainties due to model imperfection, lack of training data, and input 

variations coexist in practical simulation-based design applications. In this work, a 

Bayesian mixture modeling (BMM) approach is developed to handle heterogeneous 

uncertainties concurrently in reliability-based design optimization. To account for model-

form uncertainty, a Bayesian model inference approach is first employed to calibrate high 

fidelity simulation models by using Gaussian process (GP) regression. Then a validated 

Bayesian model is constructed based on a set of simulation data and experimental 

observations to predict the response of the actual physical system. By using the Monte 

Carlo simulation (MCS), the resultant Bayesian model predictions are utilized to form a 
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Gaussian mixture model (GMM) for propagating heterogeneous uncertainties concurrently 

in system reliability analysis. An aggregative reliability index (ARI) is then defined based 

on GMM to approximate the probability of failure under heterogeneous uncertainties. The 

proposed BMM approach is further integrated with RBDO framework to search for optimal 

system designs. The effectiveness of the proposed approach is demonstrated through three 

case studies.  

 

8.2 Heterogeneous Uncertainty Aggregation Using Bayesian Mixture 

Modeling 

8.2.1 Heterogeneous Uncertainties in Simulation-based Design  

In simulation-based design, heterogeneous uncertainties can be categorized into three 

different types as shown in Fig. 8.1, including 1) model-form uncertainty, 2) data 

uncertainty, and 3) input variations. Model form uncertainty is introduced when high-

fidelity simulation models are built through idealizations and simplifications of real 

physical processes or systems. Similarly, data uncertainty occurs if low-fidelity surrogate 

models is constructed to replace the high-fidelity simulation models based on a set of 

simulations runs. The input variation, also known as aleatory uncertainty, inherently exists 

in practical engineering system such as material properties, and manufacturing batch to 

batch variations, which can be characterized by statistical modeling methods.  

A general formulation for quantifying the model form uncertainty is expressed as [1, 

97] 

 ( ) ( , ) ( )e my y δ ε= + +x x θ x  (8.1) 
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where ye(x) denotes the actual observations of a physical process, ym(x, θ) represents the 

simulation model response as a function of inputs x and unknown parameters θ, which is 

also referred to as calibration parameter, θture is the vector of true values for the unknown 

parameters, δ(x) represents the bias or discrepancy function that characterize the 

differences between simulation and experiment output, and ε stands for the experimental 

errors, which is often assumed to follow a normal distribution ~ N(0, λ). As shown in Eq. 

(1), two main sources of model form uncertainties can be identified as: 1) the model 

parameters that fixed in real physics but is unknown in simulation model and 2) model 

discrepancy due to flawed understanding of the system. Inappropriate managing model 

form uncertainty may introduce significant errors in predicting system responses, resulting 

in inaccurate reliability assessment and untrustworthy optimal designs. Surrogate models 

can be constructed based on simulations and experimental data to further reduce the 

computational costs. However, the data uncertainty is introduced due to the limited number 

of training. As a result, errors are inevitable when using surrogates to predict the actual 

performance of the physical system.  

To efficiently quantify the heterogeneous uncertainties, the Bayesian mixture 

modeling (BMM) approach is proposed as shown in Fig. 8.1. The proposed BMM first 

addresses the model form uncertainties using Bayesian calibration with both simulation 

results and experimental observations. Then a validated Bayesian model can be constructed 

as a better surrogate of physical processes. Due to the lack of both simulation results and 

experimental data, the data uncertainty should be taken into account in RBDO while using 

the validated Bayesian model to predict the system response. Therefore, the response 

prediction is treated as normal distributions instead of a constant. By using the Monte Carlo 
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simulation for random realizations of the inputs, and predicted responses are utilized to 

form a Gaussian mixture model, which accounts for all the heterogeneous uncertainties. 

Eventually, a new measure, referred to as “aggregative reliability index”, is defined to 

propagate the heterogeneous uncertainties for reliability assessment. 

 

Figure 8.1: Flowchart of the Bayesian mixture modeling approach dealing with 

heterogeneous uncertainties 

8.2.2 Bayesian Inference for Model Calibration and Bias Correction 

In this section, a Bayesian model inference approach [35] is employed to quantify the 

model form uncertainties, where the Gaussian process (GP) regression technique is 

employed for building surrogates. Below we first introduce a brief review of the GP 

modeling and then details the Bayesian inference approach to calibrate the unknown model 

parameters and capture model bias. . 
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Assume a performance function G(z) is characterized by a GP model, the response is 

treated as a single realization of a Gaussian process, given as  

 ( )2ˆ ( ) ~ ( ) , ( , ')g GP Rσz h z β z z  (8.2) 

where z is a general formulation represents the inputs, h(z) is a vector of regression 

functions, and β represents a vector of coefficients. In this work, the prior mean h(z)β is 

assumed to be a constant. In Eq. (8.2), σ2 is an unknown constant and R(.,.) is the correlation 

function that characterize the relationship between the responses at input zi and zj, 

expressed as 

 
2

, ,
1

( , ) exp
k

i j p i p j p
p

R ω
=

 
= − − 

 
∑z z z z  (8.3) 

where k is the dimension of input z; ω = [ω1, ω2, …, ωk] is the vector of roughness 

parameters that capture the nonlinearity of the process. Therefore, the unknown 

hyperparameters β, ω, and σ2 fully characterize the GP model, and these values can be 

approximated by using Maximum Likelihood Estimation (MLE) with a log likelihood 

function given as  

 2 1
2

1 1ln(2 ) ln ln ( ) ( )
2 2a alikelihood N Nπ σ

σ
− = − + + + − −  

V Y Hβ V Y Hβ

 (8.4) 

where Y = G(Z) represents the vector of responses and Z = [z1, z2, …, zNa] represents the 

Na input sites, Hβ represents the mean vector where H = [hT(x1), …, hT(xNa)], and V = 

σ2R(.,.) stands for the covariance matrix. Numerical optimization algorithms such as 

genetic algorithm and simulated annealing method can be used to solve the MLE based on 

training data D = [Z, Y]. The prediction at any input x is assumed to follow a Gaussian 
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distribution with mean μ(z) and variance v(z) as, 

 1( ) ( ) ( )Tµ −= + −z h x β r V Y Hβ  (8.5) 

and  

 ( ){ }12 1 1 1 1( ) 1 ( ) ( )
TT T T Tv σ

−− − − −   = − + − −   z r V r h z H V r H V H h z H V r  (8.6) 

where r is the correlation vector between the input x and all training sample points in Z.  

With the GP modeling technique, a GP model ĝe for experimental response can be 

formed by assuming the simulation model, bias function, and experimental errors are 

statistically independent, expressed as  
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where x represents the inputs of the physical system. As indicated by Eq. (8.7), the GP 

model ĝe consists of GP models of simulation model and bias function. For a given set of 

simulation data Dm = [Xθ
m, Ym], the simulation model can be replaced by a GP model 

ĝm(Xθ
m) ~ GP(Hmβm, σm

2Rm(.,.)), where Xθ
m = [Xm, θ] represents the inputs of simulation 

model that consists of the vector of random variables Xm and the vector of unknown 

parameters θ. The hyperparameters of the GP model ĝm can be estimated by only using the 

simulations data Dm. Based on the simulation data and the experimental observations De = 

[Xe, Ye] that collected at Ne input sites, the bias function can be modeled by fitting another 

GP model ĝδ(Xe) ~ GP(Hδβδ, σδ
2Rδ(.,.)). To estimate the hyperparameters of the bias 

function, Kennedy and O’Hagan [31] developed the likelihood function based on the 

hyperparameters from simulation GP model and prior distribution of the unknown 

parameter. Then the mean function and the covariance matrix Ve of the GP model ĝe can 
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be expressed by augmenting the Ne input sites Xe of the experimental observations with the 

unknown parameter θ, denoted as Xθ
e = {[x1

e, θ], …, [xNe
e, θ]}. The term He can be written 

as 

 
( ) 0
( ) ( )

m m
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m e e
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δ
θ

 
=  
 

H X
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 (8.8) 

and the variance matrix Ve can be expressed as  
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where λ is the standard deviation of the experimental error and I is an identity matrix. The 

covariance matrix Vδ(.,.) is expressed as  
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and the covariance matrix Vm(.,.) is written as  
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 (8.11) 

where ka and kb represent the maximum indices for matrix A and matrix B, respectively; 

they are equal to Nm for Xθ
m and Ne for Xe and Xθ

e. It should be mentioned that the 

covariance matrix Vm and Vδ are calculated by using the hyperparameters of the simulation 

model GP ĝm
 and the bias function GP ĝδ, respectively.  

Clearly, the unknown parameter θ exists in the simulation model and it affects the GP 

modeling of experimental response. Therefore, the Bayesian inference method is utilized 
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to estimate the posterior distribution of the unknown parameter θ. By integrating the 

simulation data set and experimental observations, the overall responses are obtained as 

Yall = [Ym, Ye], and the posterior distribution of θ can be approximated as 

 ( , ) ( , ) ( )all allp p pφ φ∝θ Y Y θ θ  (8.12) 

where p(θ) is the prior of the calibration parameters and ϕ represents all the estimated 

hyperparameters during the GP modeling of simulation model and bias function. The 

likelihood function p(Yall | θ, ϕ) can be written as  
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where W is expressed as  

 
11T e

e e

−− =  W H V H  (8.14) 

The details of calculating the posterior distribution of the calibration parameter can be 

found in the ref. [97]. After estimating the posterior distribution of the calibration 

parameter by the Bayesian inference, the actual response for any new point x’ can be 

predicted by the GP model ĝe(x’), referred to as validated Bayesian model, where the 

prediction mean is given as  

 ' 1( ) ( ', ) e T all e e
eµ −  = + − x h x θ β T V Y H β  (8.15) 

where the correlation matrix T can be written as   
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The covariance function at the given point x’ can be calculated as   
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Therefore, we can make inference about the experimental response by integrating Eqs. 

(8.15) and (8.17) with respect to the posterior distribution of θ in Eq. (8.12), which can be 

done by using numerical computation methods such as Gauss-Legendre quadrature. By 

employing the Bayesian model inference approach, the model form uncertainty has been 

quantified through integrating both the simulation results and experimental observations, 

and a validated Bayesian model can be obtained for predicting the response of the actual 

physical system. 

8.2.3 Reliability Analysis under Heterogeneous Uncertainties 

Reliability is a fundamental attribute for the safe operation of engineering systems, and 

reliability analysis aims at the quantification of the probability of failure under various 

sources of uncertainties. Considering a limit state function G(x), which is generally a 

simulation model of a real physical process, a system failure is defined as the limit state 

value is less than zero. Then the probability of failure Pf is a multi-dimensional integral 

given as  

 [ ]
( ) 0

Pr ( ) 0 (0) ( )f G xG
P G F f d

<
= < = = ∫ ∫ x

x x x  (8.18) 

where fx(x) represents the joint probability density function of the input variables x, and 

FG(.) represents the cumulative distribution function of G(x). However, it is extremely 

difficult to analytically compute the probability of failure by directly using Eq. (8.18). 

Moreover, only the input variation is considered when assessing the reliability using Eq. 

(8.18). In practical engineering applications, heterogeneous uncertainties need to be taken 



www.manaraa.com

197 

into account in reliability analysis as the simulation model has to be calibrated by 

experimental observations and data uncertainty should be addressed when the validated 

Bayesian model is used as the representative of the real physical process. Therefore, the 

Bayesian mixture model is proposed in this subsection for propagating heterogeneous 

uncertainties in reliability analysis.  

 

Figure 8.2: Gaussian mixture model for heterogeneous uncertainties aggregation  

A validated Bayesian model can be constructed by calibrating the simulation model, 

and the experimental response at any input site can be predicted using the validated 

Bayesian model. The model form uncertainty can be addressed by replacing the limit state 

function G(x) with the validated Bayesian model ĝe(x), and the estimated probability of 

failure can be written as  

 [ ] ( ) ( )
0

ˆˆ ˆ ˆPr ( ) 0 Pr 0 (0) ( ( )) ( )e e e
gG g F p g dg

−∞
 < ≈ < = =  ∫xx x x x  (8.19) 

where Fĝe(x)(.) represents the estimated cumulative distribution function of the predicted 

experimental response using the validated Bayesian model, p(.) represents the probability 

density function, and x is the input vector contains nr random variables xi, i = 1, 2, …, nr. 
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To propagate the input variation to the system response, Monto Carlo simulations method 

is directly utilized for random realizations of the input x. In MCS, N samples are generated 

according to the randomness of the input variables x, denoted as Xm = [xm,1, xm,2, …, xm,N]. 

For each MCS sample, the validated Bayesian model is used for experimental response 

prediction, given as ĝe(xm,i) ~ N(μi,σi), i = 1, 2, …, N, where the prediction mean and 

standard deviation for the ith distribution are denoted as μi = μ(xm,i) and σi = v(xm,i)1/2 for 

simplicity. It should be mentioned that the prediction variance is also known as the mean 

squared error, which is used as a measurement for quantifying the prediction accuracy. 

Therefore, the prediction at any MCS sample point is actually a normally distributed 

random variable, which results in a point-to-normal distribution mapping relationship 

between the MCS sample and response predictions. After predicting the response of all the 

MCS samples by the validated Bayesian model, a family of normal distributions are readily 

obtained to yield the stochastic system response with the consideration of the 

heterogeneous uncertainties.  

As shown in Fig. 8.2, simulation results and experimental observations are used for 

constructing the validated Bayesian model for representing the real physical process. 

Within the range of the input variation, MCS is employed for random realizations and the 

predicted responses are treated as component normal distributions to form a Gaussian 

mixture model (GMM). As the means and variances of the component normal distributions 

can be directly obtained by the validated Bayesian model, the probability density function 

of the GMM is then expressed as 

 ( ),
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where xi represents the ith MCS sample, πi is the weight of the ith component normal 

distribution, and the summary of πi is equal to one. The MCS samples are equally important 

since they are simultaneously generated according to the randomness of the given input x. 

Therefore, the weight πi of each component normal distribution of the GMM has the same 

value 1/N. According to Eq. (8.20), the mean μGMM and standard deviation σGMM of the 

GMM can be directly calculated based on the known statistical moments of the N 

component normal distributions, expressed as  
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where vi represents the prediction variance of the ith MCS sample. By assuming that the 

GMM follows a normal distribution with mean μGMM and variance vGMM, the probability of 

failure can be estimated through the integration over the area of the failure region, 

expressed as  

 [ ] [ ]Pr ( ) 0 Pr 0 GMM

GMM

G GMM µ
σ

 −
< ≈ < = Φ 

 
x  (8.23) 

Apparently, the three different types of uncertainties have been concurrently incorporated 

in Eq. (8.23), and thus the proposed BMM approach is capable of aggregating the 

heterogeneous uncertainties in reliability analysis. To facilitate the RBDO process, an 

aggregative reliability index βagg is defined as 
𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺
𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺

, and the reliability can be approximated 

as  

 ˆ ( )aggR R β≈ = Φ  (8.24) 
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8.3 Reliability Based Design Optimization Framework  

Reliability-based design optimization aims at finding optimal system designs that 

minimize cost while satisfying a high level of reliability requirement. By using the 

proposed BMM approach, heterogeneous uncertainties including three different types have 

been taken into account for ensuring reliable reliability assessment. By integrating with the 

BMM, the RBDO problem is reformulated as  
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where βagg
i represents the aggregative reliability index of the ith limit state function Gi

e(X); 

βt
i represents the corresponding reliability target; ĝi

e(X) represents the validated Bayesian 

model for the ith limit state function; Cost(d) represents the objective function; GMMi 

stands for the constructed GMMs; X is the vector of random variables; and nc, nd are the 

number of constraints and design variables, respectively. Validated Bayesian models are 

first built by integrating both simulation results and experimental observations, and GMMs 

are then constructed to simultaneously address the heterogeneous uncertainties in iterative 

reliability analysis.  
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For an engineering design application, the procedure of RBDO using the proposed 

BMM approach is summarized in Fig. 8.3. The first step is to calibrate the simulation model 

by using the Bayesian model inference method. For a simulation model ym, Nm random 

samples are first generated by using Latin hypercube sampling (LHS), denoted as Xθ
m = 

[Xm, θm]. With the evaluated simulation responses at these input points, a Gaussian process 

model can be constructed based on the data set Dm = [Xθ
m, Ym]. Similarly, Ne experiment 

observation are collected at random sample Xe
 generated by LHS method. Based on the 

overall responses Yall = [Ym, Ye] and prior distributions of unknown parameter θ, a 

validated Bayesian model that used to predict the actual response can be achieved as 

introduced in subsection 8.2.2. It should be mentioned that the model calibration process 

only needs to be conducted once during the RBDO process. Staring at an initial design d0, 

the RBDO will be performed iteratively. To provide a reliable optimum design with 

heterogeneous uncertainties, the proposed reliability analysis approach is employed to 

estimate the reliability in each design iteration. In reliability analysis, N Monte Carlo 

samples are first generated according to the randomness of the current design point, 

denoted as Xm = [xm,1, xm,2, …, xm,N]. By using the validated Bayesian model, the predicted 

response for each MCS sample is treated as a normally distributed random variable, where 

the prediction mean and variance can be calculated as shown in Eq. (8.15) and (8.17). After 

collecting all the N normal distributed predictions, a Gaussian mixture model can be 

constructed accordingly. The GMM is assumed to follow a normal distribution with mean 

μGMM and standard deviation σGMM, which can be easily computed by using Eq. (8.21) and 

(8.22). Consequently, an aggregative reliability index βagg can be calculated as the ratio of 

μGMM to σGMM. To determine the next design point, the finite difference method is employed 
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for calculating the sensitivity of βagg with respect to design variables, and the sequential 

quadratic programming (SQP) technique is served as the optimizer in RBDO. The iterative 

RBDO process will be repeated until it converges to an optimum design. 

 

Figure 8.3: Flowchart of BMM-RBDO framework  

8.4 Case Studies 

In this section, three RBDO problems will be solved to demonstrate the effectiveness 

of the proposed Bayesian mixture modeling method.  

8.4.1 Case Study I: A Mathematical Design Problem 

In the first case study, two random design variables X1 and X2 are both normally 

distributed as X1 ~ N (μ1, 0.34642) and X2 ~ N (μ2, 0.34642). The RBDO problem is 
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formulated as 
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where the second constraint has been modified with an unknown calibration parameter θ 

and a bias function δ(X1, X2), the experimental error is assumed to be neglectable. The prior 

of calibration parameter is assumed to follow a normal distribution as θprior ~ N(8, 2) while 

the true value of θ is set to 5. In this study, the design objective is to minimize the cost 

function and ensures reliability requirements are satisfied. The target reliability level is set 

to 0.985 for all the three constraints, thus the target reliability index βt can be calculated as 

2.1701.  

As outline in Section 3, the first step is to calibrate the simulation model with the 

consideration of unknown parameter and bias function. Note the functions G1 and G3 have 

not been modified to distinguish the differences between simulation and experimental 

model, they are assumed to be accurate experimental functions and 12 Latin hyper cube 

samples are generated to construct the GP models. As shown in Fig. 8.4, two high-fidelity 
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GP models for G1 and G3 are constructed, thus we can avoid significant influences caused 

by these two limit state functions on the performance of RBDO. For G2 function, 25 total 

samples are generated according to Latin hyper cube sampling. Among these sample points, 

20 simulation responses are collected with random values of θ while 5 experimental 

responses are collected with the true calibration parameter. As introduced in subsection 

8.2.2, a validated Bayesian model for G2
e can be obtained after simulation model 

calibration based on the simulation data and experimental observations. The posterior 

distribution of the unknown parameter θ is approximated as θpost ~ N(8.2376, 1.2383). 

Figure 8.5a shows the comparison of estimated and origin simulation model G2
m and 8.5b 

shows the comparison of estimated and origin limit state functions of G2
e
. Due to the 

identifiability problem and the lack of data, the estimation of posterior distribution of θ is 

not accurate, leading to significant errors in predicting the simulation model G2
m at the true 

θ value. However, the limit state function predicted by the validated Bayesian model is 

close to the actual one since the validation process considers both unknown parameter and 

bias function.   

 

Figure 8.4: Actual LSFs of G1 and G3 vs. estimated LSFs using GP models 
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Figure 8.5: Validated Bayesian model prediction of a) simulation model G2
m, and b) 

experimental response G2
e 

To solve the RBDO problem, the proposed reliability analysis method is employed for 

iterative reliability assessment. In each design iteration, 105 MCS samples are generated 

according to the randomness of the current design point. For each constraint, the reliability 

is approximated based on the GMM that constructed by the predicted responses at MCS 

samples. Starting from the initial design d0 = [5, 5], the optimum design dopt = [4.8312, 

6.6407] is obtained after 9 iterations. The iterative design history of deigns points, 

reliabilities estimated by the GP models, and cost function values are listed in Table 8.1. 

Figure 8.6 shows the iterative design history for design variable X1 and X2, and Figure 8.7 

shows the estimated reliabilities of three limit state functions during the RBDO process.  

Table 8.1: Design history for case study I  

Iteration Design Point 1R̂  2R̂  3R̂  Cost 

1 [5.0000, 5.0000] 1.0000 1.0000 0.4784 10.0000 

2 [4.7352, 6.0202] 1.0000 0.9997 0.8392 11.2850 
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3 [4.6737, 6.7401] 1.0000 0.9920 0.9940 12.0664 

4 [4.6600, 6.7149] 1.0000 0.9935 0.9927 12.0549 

5 [4.7505, 6.6658] 1.0000 0.9902 0.9885 11.9153 

6 [4.8101, 6.6523] 1.0000 0.9863 0.9865 11.8422 

7 [4.8303, 6.6424] 1.0000 0.9850 0.9852 11.8121 

8 [4.8311, 6.6409] 1.0000 0.9850 0.9850 11.8098 

9 [4.8312, 6.6407] 1.0000 0.9850 0.9850 11.8095 
 

 

Figure 8.6: RBDO history of design variables  

 

Figure 8.7: Reliabilities estimation at each design iteration   
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In the proposed BMM approach, the RBDO problem is solved with the consideration 

of three different types of uncertainties. To demonstrate the effectiveness of the proposed 

approach, the RBDO problem are solved under other two different conditions: 1) the 

validated Bayesian model ĝ2
m is used for reliability analysis while the bias function has 

been ignored, denoted as “Sim. Only”, and 2) the validated Bayesian model ĝ2
e is directly 

employed for reliability analysis which means the data uncertainty is ignored, denoted as 

“RBDO”. All the optimal results are shown in Table 8.2, while the reliabilities have been 

validated by direct MCS with 106 samples. As shown in Fig. 8.8, without the consideration 

of bias function, the optimal design completely falls in the failure region while the 

reliability of G2
e is 0.0231. Similarly, an optimal design near to the failure surface is 

obtained when the data uncertainty is not addressed, and the reliability of G2
e is given as 

0.6735. On the contrary, by aggregating the three different types of uncertainties in 

reliability analysis, the proposed BMM approach can provide a reliable optimum design 

that all the three probabilistic constraints are satisfied.   

 

Figure 8.8: Optimal designs obtained by using different methods 
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Table 8.2: Comparison of optimal results  

 Optimum R1 R2 R3 Cost 

Sim. Only [3.7843, 4.1126] 1 0.0231 1 10.3283 

RBDO [5.2454, 5.9145] 1 0.6735 0.9891 10.6691 

BMM [4.8312, 6.6407] 1 0.9974 0.9852 11.8095 

 

8.4.2 Case Study II: A Highly Nonlinear Problem 

The bench mark example with 2 statistically independent random variables x = [x1, x2] 

has been tested by the proposed BMM approach. The random variables are assumed to 

follow normal distributions as x1 ~ N(d1, 0.1) and x2 ~ N(d2, 0.1), respectively. The RBDO 

problem is then formulated as     
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where an unknown calibration parameter θ is added in the second constraint while the prior 

distribution is given as θprior ~N(6, 1) and the true value is set to 4; the experimental error 

is assumed to be neglectable.  

The target reliability for both constraints are set to 0.985, thus the target reliability 

index is approximated as 2.1701. Due to the high nonlinearity, 50 simulation and 12 
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experimental sample points are generated by Latin hypercube sampling scheme for 

simulation model validation of G2
e, and 8 samples are used for constructing GP model for 

G1. In this study, 105 MCS samples are used for reliability analysis during RBDO process. 

Starting from an initial design d0 = [2.5, 2.5], an optimum design dopt = [2.7078, 2.2965] is 

obtained after twelve iterations.  

 

Figure 8.9: Actual LSF of G1 and G2 vs. estimated LSF using a) GP model, and b) 

validated Bayesian model 

Table 8.3: Design history for case study II  

Iteration Design Point 1R̂  2R̂  Cost 

1 [2.5000, 2.5000] 1.0000 0.9207 3.6900 

2 [2.7091, 2.2251] 1.0000 0.9954 4.1321 

3 [2.8073, 2.3334] 1.0000 0.9605 3.5744 

4 [2.7474, 2.2543] 1.0000 0.9906 3.9549 

5 [2.7367, 2.2659] 1.0000 0.9893 3.9351 

6 [2.7078, 2.3075] 1.0000 0.9825 3.8491 

7 [2.7127, 2.2887] 1.0000 0.9864 3.9032 
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8 [2.7062, 2.3004] 1.0000 0.9843 3.8764 

9 [2.7078, 2.2954] 1.0000 0.9853 3.8902 

10 [2.7073, 2.2971] 1.0000 0.9849 3.8854 

11 [2.7076, 2.2964] 1.0000 0.9851 3.8871 

12 [2.7078, 2.2965] 1.0000 0.9850 3.8863 

The contour plot of origin and predicted limit state functions are depicted in Fig. 8.9, 

which indicates the high nonlinearity of the performance function G2
e. Figure 8.10 shows 

the impact of simulation model uncertainties due to the unknown parameter and model 

discrepancy. It shows that the limit state function of G2
m differs from the true one if the 

calibration parameter is not at its true value or the bias term is ignored. These limit state 

functions are not trust-worthy and underestimated or overestimated optimal designs can be 

achieved when they are directly applied for RBDO. This brings up the importance of 

validating simulation model in design under uncertainties.  

 

Figure 8.10: Model form uncertainties introduced by a) unknown parameter, and b) bias 

function 
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The RBDO history of design variables, estimated reliabilities, and cost function values 

are detailed in Table 8.3 and Fig. 8.11 and 8.12. To validate the optimal design obtained 

by the proposed BMM approach, direct MCS with 106 samples are employed based on G2
e
 

function with the true calibration parameter and bias term, and the reliability is given as 

0.9996. To demonstrate the effectiveness of simulation model validation, the BMM 

approach is performed with 120 simulation and 40 experimental samples. By increasing 

the number of training data points, a more accurate predicted limit state function can be 

obtained as shown in Fig. 8.13. Moreover, the data uncertainty can be significantly reduced 

as indicated by the 95% confidence interval. By constructing a validated Bayesian model, 

the same RBDO problem is solved and an optimal design is obtained as dopt = [2.8046, 

3.2765] which is close to the actual optimum [2.8163, 3.2677] that obtained based on the 

actual experimental limit state functions. The results demonstrate that the proposed 

reliability analysis approach is applicable when the data uncertainty is not significant.  

 

Figure 8.11: RBDO history of design variables 
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Figure 8.12: Reliabilities estimation in each design iteration 

 

Figure 8.13: High fidelity of the validated Bayesian model for G2
e with sufficient data 

points   

8.4.3 Case Study III: Short Column Design 

This case study considers a design problem of a short column with rectangular cross-

section. The column is subjected to normal force F and biaxial bending moments M1 = 
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250kNm and M2 = 125kNm. The dimensions of the cross-section are denoted as h and b, 

receptively, which are assumed to be normally distributed with a variance of 25 mm, 

denoted as d = [b, h]. The following RBDO formulation is used for the short column design: 
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where fy = 40 MPa is the yield strength, the experimental error is assumed to be neglectable 

and the force F is treated as the unknown parameter with a normal prior distribution Fprior 

~ N(4000kN, 1000kN) while the true value is given as 2500kN. The design objective is to 

minimize the cross-section area of the column with a reliability requirement 0.985.  

 



www.manaraa.com

214 

Figure 8.14: Validated Bayesian model prediction of a) simulation model, and b) bias 

function  

 

Figure 8.15: Approximated LSF by validated Bayesian model vs. actual LSF of Ge  

To solve the design problem, 28 total samples are generated by using Latin hypercube 

sampling, including 22 simulation data obtained with random calibration parameter and 6 

experimental observations. Following the procedure introduced in Section 8.3, a validated 

Gaussian process model is first built based on the overall data set and the prior information 

of the calibration parameter. The posterior distribution is obtained as Fpost ~ N(3834kN, 

933kN), which is quite similar with the prior distribution. The reason is because of the 

identifiability problem when considering both bias function and calibration parameters. 

Figure 8.14 shows the GP predictions of simulation model Gm at zero and bias function δ(.) 

at zero, respectively. Though the GP models ĝm and ĝδ cannot accurately model the actual 

simulation model and bias function, the validated Bayesian model ĝe can provide better 

approximations of the actual experimental function as shown in Fig. 8.15.  

Starting from an initial design point d0 = [600, 600], the RBDO using the proposed 

approach is performed and an optimal solution dopt = [359.0247, 178.8203] is obtained after 
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22 iterations. The iterative design history is depicted in Fig. 8.16, which shows that the 

design variables converge to the optimal solution after the 15th iteration. By using 105 

Monto Carlo simulation samples, the proposed BMM approach is employed for addressing 

the model form, data uncertainty, and input variation in reliability analysis during RBDO. 

The reliability history and the objective function values are shown in Fig. 8.17. The actual 

reliability at the optimal design is evaluated by 106 MCS samples based on the performance 

function with true calibration parameter and bias function, given as 0.9982. The result 

demonstrates that the proposed BMM approach can provide reliable optimal designs by 

aggregating the three different types of uncertainties.   

 

Figure 8.16: RBDO history of design variables  
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Figure 8.17: RBDO history of reliability and objective function 

8.5 Conclusion 

This work presents a Bayesian mixture modeling approach for solving RBDO problems 

with the consideration of heterogeneous uncertainties. To characterize the stochastic 

behavior of a physical process, a number of experimental observations are used to refine 

its simulation model by using the Bayesian inference method and GP modeling technique. 

With the validated Bayesian model, the response predictions are obtained for a large 

number of random sample point in Monte Carlo simulation, and then readily formed to a 

Gaussian mixture model for propagating the heterogeneous uncertainties. To approximate 

the probability of failure under heterogeneous uncertainties, an aggregative reliability 

index is defined based on the first two statistical moments of the Gaussian mixtures to 

calculate the probability density function of the stochastic system response. The proposed 

BMM approach is then integrated into RBDO framework for system design under 

heterogeneous uncertainties, and three case studies are solved to demonstrate the 

effectiveness. The results indicate that the proposed BMM approach can successfully 
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manage the heterogeneous uncertainties, and thus is capable of suggesting more reliable 

optimum designs by taking the three different types of uncertainties into account in RBDO.  
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9 CONCLUSION AND FUTURE WORK 

This dissertation presents a series research on heterogeneous uncertainty quantification for 

reliability analysis and RBDO. By using machine learning and deep learning techniques, new 

reliability analysis and design techniques are presented to effectively address the 

challenges of dealing with different types of uncertainties.  

In Chapter 3, the results from two examples demonstrate that LSTM is capable of 

predicting the response at each time instant. By using the LSTMs, a large number of 

artificial data can be achieved without evaluating the actual time-dependent responses, 

which can significantly reduce the computational costs. With a large scale data set, the 

DFN is used to effectively account for both the uncertainties due to random variables and 

stochastic process. The proposed framework also develops a strategy to determine the best 

architecture of the DFN in terms of the number of neurons in the hidden layers, which can 

effectively prevent over-fitting issue and thus enhance the performance of the time-

dependent reliability analysis. The results from Chapter 4 demonstrate that the proposed 

sequential Kriging model algorithm can obtain accurate optimum solutions, and the 

required computational costs are less than existing methods. The major contribution of 

these work lies in developing a simulation-based framework for efficiently handling the 

complexity and high dimensionality of generic stochastic processes in time-dependent 

reliability analysis and time- dependent reliability-based design optimization. 

Although surrogate modeling techniques have been successfully employed for 

reliability-based design optimization, the performances of such methods for complex 

engineering applications is severely limited due to the expensive costs of collecting 
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sufficient training data. When the training data is limited, most of existing surrogate-based 

RBDO methods lack the capability to provide reliable optimum designs due to the 

ignorance of surrogate model uncertainty. Chapter 5 introduces a new RBDO framework 

to compensate the surrogate model uncertainty, where the sensitivity of the equivalent 

reliability index is derived and thus facilitate the optimization process. As a result, the 

overestimation of reliability is avoided and the results demonstrate that the proposed 

approach can efficiently handle surrogate model uncertainty and thus provide reliable 

optimum solutions by balancing the trade-off between the cost and the risk of the 

overestimation of reliability.  

In Chapter 6 and 7, one reliability analysis method and one RBDO algorithm are 

developed to account for simulation model uncertainties. By employing the Gaussian 

process regression technique, surrogate models are constructed for simulation model and 

experiments, respectively. The model discrepancy is addressed by updating the 

hyperparameters of the experimental GP model with existing simulation and experimental 

data. To enhance the model fidelity, critical simulation results and experimental 

observations are sequentially collected, which ensures an accurate reliability estimation. A 

multi-fidelity design optimization strategy is then proposed to provide reliable optimal 

solutions. In Chapter 8, a Bayesian mixture modeling technique is developed to aggregate 

the heterogeneous uncertainties in RBDO, where Bayesian inference techniques are 

employed to deal with the unknown parameters in the simulation models. By addressing 

the heterogeneous uncertainties into an aggregative reliability index, the derived optimal 

solution is ensured to avoid underestimation. The results from case studies and 

comparisons demonstrate the effectiveness of the proposed approaches. 
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In Chapter 3, the proposed approach reveals the advantage of using the LSTM, which 

can accurately make time-dependent response predictions based on only one time-series 

data. Future work will focus on improving the data efficiency and accuracy of reliability 

approximation. For example, starting from a less number of training data sets, adaptive 

sampling schemes can be applied to sequentially build new LSTM models. Critical samples 

will be iteratively identified until the reliability approximation converges. As a result, the 

stability can be enhanced while the   computational costs can be further reduced. Instead 

of designing the width of the DFN, accounting for both depth and width of the network 

may improve the accuracy of minimum response predictions. Methods such as Bayesian 

optimization will be investigated in future. Moreover, the presented work will be further 

extended to dynamic systems, where the system response at current time step is related to 

previous actions and outputs.  
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